Home
Class 12
MATHS
[" a "61." If roots of "x^(3)+bx^(2)+cx+...

[" a "61." If roots of "x^(3)+bx^(2)+cx+d=0" are "],[(A)" in "A.P." then "2b^(3)-9bc+27d=0],[" (B) in "(x" ."P" .then "b^(3)d=c^(3)],[" (C) in G.P.then "27d^(3)=9bcd^(2)-4c^(3)d],[" (D) equal then "c^(3)=b^(3)+3bc]

Promotional Banner

Similar Questions

Explore conceptually related problems

If roots of x^3+bx^2+cx+d=0 are (A) in A.P. then 2b^3-9bc+27d=0 (B) in GP then b^3d=c^3 (C) in GP then 27d^3=9bcd^2-4c^3d (D) equal then c^3=b^3+3bc

If roots of x^3+bx^2+cx+d=0 are (A) in A.P. then 2b^3-9bc+27d=0 (B) in GP then b^3d=c^3 (C) in GP then 27d^3=9bcd^2-4c^3d (D) equal then c^3=b^3+3bc

If roots of x^3+bx^2+cx+d=0 are (A) in A.P. then 2b^3-9bc+27d=0 (B) in GP then b^3d=c^3 (C) in GP then 27d^3=9bcd^2-4c^3d (D) equal then c^3=b^3+3bc

If the zeros of the polynomial f(x)=ax^(3)+3bx^(2)+3cx+d are in A.P. prove that 2b^(3)-3abc+a^(2)d=0

If the roots of ax^3 + bx^2 + cx +d=0 are in A.P then the roots of a ( x+k)^3 + b ( x + k)^2 + c ( x+k) + d=0 are in

If the zeros of the polynomial f(x)=a x^3+3b x^2+3c x+d are in A.P., prove that 2b^3-3a b c+a^2d=0 .

If 1, -2, 3 are the roots of ax^(3) + bx^(2) + cx + d = 0 then the roots of ax^(3) + 3bx^(2) + 9cx + 27d = 0 are

If 1, -2, 3 are the roots of ax^(3) + bx^(2) + cx + d = 0 then the roots of ax^(3) + 3bx^(2) + 9cx + 27d = 0 are

If (2^(3))^(2)=4^(x), then 3^(x)=3(b)6(c)9(d)27