Home
Class 12
MATHS
Let: an=int0^(pi/2)(1-sint)^nsin2tdt T...

Let: `a_n=int_0^(pi/2)(1-sint)^nsin2tdt` Then find the value of `lim_(n->oo)na_n`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let: a_(n)=int_(0)^((pi)/(2))(1-sin t)^(n)sin2tdt Then find the value of lim_(n rarr oo)na_(n)

Find the value of lim_(n->oo) (1+2+3+.......+n)/n^2

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

lim_(n->oo) nsin(1/n)

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of lim_(n to oo) n(I_(n)+I_(n-2)) is -

a_ (n) = int_ (0) ^ ((pi) / (2)) (1-sin t) ^ (n) sin2tdt ten lim_ (n rarr oo) sum_ (n = 1) ^ (n) (a_ ( n)) / (n) is equal to