Home
Class 12
MATHS
For ngeq3, A^n=A^(n-2)+A^2-1,where A=[[1...

For `ngeq3, A^n=A^(n-2)+A^2-1`,where `A=[[1, 0, 0], [1, 0, 1],[ 0, 1, 0]]` Determine `A^50` and `A^49`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM (SUBJECTIVE)|12 Videos
  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM|32 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

For n>=3,A^(n)=A^(n-2)+A^(2)-1, where A=[[1,0,01,0,10,1,0]] Determine A^(50) and A^(49)

If A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] find AB and BA.

If A=[[2,1,3],[4,1,0]], B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

If A=[{:(2,-1),(-1,2):}] , verify A^(2)-4A+3I=0 , where I=[{:(1,0),(0,1):}] and O=[{:(0,0),(0,0):}] . Hence find A^(-1) .

If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

If A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

If A=[[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all n epsilon N

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] Trace of A^(50) equals