Home
Class 12
MATHS
If A=[[x, x] , [x, x]] and B=[[x, -x] , ...

If `A=[[x, x] , [x, x]]` and `B=[[x, -x] , [-x, x]]` then prove that `x e^A=1/2(A.e^(2x)+B)` where `e^A= I+A+A^2/(2!)+...`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM (SUBJECTIVE)|12 Videos
  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM|32 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

If g(x)=e^(x) and f(x)=x^(2) then prove that (gof)=e^(x^(2)) and fog=e^(2x)

(e^(2x)+2e^(x)+1)/(e^(x))

If A={(x,y):y=e^(x),x in R} and B={(x,y):y=e^(-2x),x in R}, then

int (e^(2x) +e^(-2x))/(e^(x)) dx

f(x)=((e^(2x)-1)/(e^(2x)+1)) is

Prove that the least value of f(x) = (e^(x) + e^(-x)) is 2

int (e ^ (2x) -e ^ (- 2x)) / (e ^ (2x) + e ^ (- 2x)) dx

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If y=e^(3 log x+2x)," Prove that "(dy)/(dx)=x^(2) (2x+3) e^(2x) .

I=int(e^(2x)-1)/(e^(2x))dx