Home
Class 12
MATHS
Solve the following system of equation b...

Solve the following system of equation by matrix method
` x+2y +3z+1= 0, -2x+y-z +5=0 ,3x +y-2z -3=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the matrix method, we start by rewriting the equations in a standard form: 1. \( x + 2y + 3z + 1 = 0 \) can be rewritten as: \[ x + 2y + 3z = -1 \] 2. \( -2x + y - z + 5 = 0 \) can be rewritten as: \[ -2x + y - z = -5 \] 3. \( 3x + y - 2z - 3 = 0 \) can be rewritten as: \[ 3x + y - 2z = 3 \] Now we have the following system of equations: \[ \begin{align*} 1. & \quad x + 2y + 3z = -1 \\ 2. & \quad -2x + y - z = -5 \\ 3. & \quad 3x + y - 2z = 3 \end{align*} \] ### Step 1: Form the coefficient matrix \( A \), variable matrix \( X \), and constant matrix \( B \) The coefficient matrix \( A \) is: \[ A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 1 & -1 \\ 3 & 1 & -2 \end{bmatrix} \] The variable matrix \( X \) is: \[ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] The constant matrix \( B \) is: \[ B = \begin{bmatrix} -1 \\ -5 \\ 3 \end{bmatrix} \] ### Step 2: Write the matrix equation We can express the system of equations in matrix form as: \[ AX = B \] ### Step 3: Find the inverse of matrix \( A \) To find \( X \), we need to calculate \( A^{-1} \) and then use the formula: \[ X = A^{-1}B \] First, we calculate the determinant of \( A \): \[ \text{det}(A) = 1 \cdot (1 \cdot (-2) - (-1) \cdot 1) - 2 \cdot (-2 \cdot (-2) - (-1) \cdot 3) + 3 \cdot (-2 \cdot 1 - 1 \cdot 3) \] Calculating this step by step: \[ = 1 \cdot (-2 + 1) - 2 \cdot (4 + 3) + 3 \cdot (-2 - 3) \] \[ = 1 \cdot (-1) - 2 \cdot 7 + 3 \cdot (-5) \] \[ = -1 - 14 - 15 = -30 \] Next, we find the adjoint of \( A \). The adjoint is calculated using the cofactor matrix and then transposing it. The cofactor matrix \( C \) is: \[ C = \begin{bmatrix} \text{det} \begin{bmatrix} 1 & -1 \\ 1 & -2 \end{bmatrix} & -\text{det} \begin{bmatrix} -2 & -1 \\ 3 & -2 \end{bmatrix} & \text{det} \begin{bmatrix} -2 & 1 \\ 3 & 1 \end{bmatrix} \\ -\text{det} \begin{bmatrix} 2 & 3 \\ 1 & -2 \end{bmatrix} & \text{det} \begin{bmatrix} 1 & 3 \\ 3 & -2 \end{bmatrix} & -\text{det} \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \\ \text{det} \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} & -\text{det} \begin{bmatrix} 1 & 3 \\ -2 & -1 \end{bmatrix} & \text{det} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \end{bmatrix} \] Calculating the determinants: 1. \( \text{det} \begin{bmatrix} 1 & -1 \\ 1 & -2 \end{bmatrix} = 1 \cdot (-2) - (-1) \cdot 1 = -2 + 1 = -1 \) 2. \( -\text{det} \begin{bmatrix} -2 & -1 \\ 3 & -2 \end{bmatrix} = -((-2)(-2) - (-1)(3)) = -(4 + 3) = -7 \) 3. \( \text{det} \begin{bmatrix} -2 & 1 \\ 3 & 1 \end{bmatrix} = (-2)(1) - (1)(3) = -2 - 3 = -5 \) 4. \( -\text{det} \begin{bmatrix} 2 & 3 \\ 1 & -2 \end{bmatrix} = -((2)(-2) - (3)(1)) = -(-4 - 3) = 7 \) 5. \( \text{det} \begin{bmatrix} 1 & 3 \\ 3 & -2 \end{bmatrix} = (1)(-2) - (3)(3) = -2 - 9 = -11 \) 6. \( -\text{det} \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} = -((1)(1) - (2)(3)) = -(1 - 6) = 5 \) 7. \( \text{det} \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} = (2)(-1) - (3)(1) = -2 - 3 = -5 \) 8. \( -\text{det} \begin{bmatrix} 1 & 3 \\ -2 & -1 \end{bmatrix} = -((1)(-1) - (3)(-2)) = -(-1 + 6) = -5 \) 9. \( \text{det} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} = (1)(1) - (2)(-2) = 1 + 4 = 5 \) Putting it all together, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} -1 & -7 & -5 \\ 7 & -11 & 5 \\ -5 & -5 & 5 \end{bmatrix} \] Now, we take the transpose of \( C \) to get the adjoint \( \text{adj}(A) \): \[ \text{adj}(A) = \begin{bmatrix} -1 & 7 & -5 \\ -7 & -11 & -5 \\ -5 & 5 & 5 \end{bmatrix} \] ### Step 4: Calculate the inverse of \( A \) Now we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) = \frac{1}{-30} \begin{bmatrix} -1 & 7 & -5 \\ -7 & -11 & -5 \\ -5 & 5 & 5 \end{bmatrix} \] \[ = \begin{bmatrix} \frac{1}{30} & -\frac{7}{30} & \frac{1}{6} \\ \frac{7}{30} & \frac{11}{30} & \frac{1}{6} \\ \frac{1}{6} & -\frac{1}{6} & -\frac{1}{6} \end{bmatrix} \] ### Step 5: Multiply \( A^{-1} \) by \( B \) Now we compute \( X = A^{-1}B \): \[ X = \begin{bmatrix} \frac{1}{30} & -\frac{7}{30} & \frac{1}{6} \\ \frac{7}{30} & \frac{11}{30} & \frac{1}{6} \\ \frac{1}{6} & -\frac{1}{6} & -\frac{1}{6} \end{bmatrix} \begin{bmatrix} -1 \\ -5 \\ 3 \end{bmatrix} \] Calculating this gives: \[ X = \begin{bmatrix} \frac{1}{30}(-1) + -\frac{7}{30}(-5) + \frac{1}{6}(3) \\ \frac{7}{30}(-1) + \frac{11}{30}(-5) + \frac{1}{6}(3) \\ \frac{1}{6}(-1) + -\frac{1}{6}(-5) + -\frac{1}{6}(3) \end{bmatrix} \] Calculating each component: 1. First row: \[ = \frac{-1}{30} + \frac{35}{30} + \frac{5}{30} = \frac{39}{30} = \frac{13}{10} \] 2. Second row: \[ = \frac{-7}{30} - \frac{55}{30} + \frac{5}{30} = \frac{-57}{30} = -\frac{19}{10} \] 3. Third row: \[ = \frac{-1}{6} + \frac{5}{6} - \frac{3}{6} = \frac{1}{6} \] Thus, we have: \[ X = \begin{bmatrix} \frac{13}{10} \\ -\frac{19}{10} \\ \frac{1}{6} \end{bmatrix} \] ### Final Result The solution to the system of equations is: \[ x = \frac{13}{10}, \quad y = -\frac{19}{10}, \quad z = \frac{1}{6} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-I)|12 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-II)|13 Videos
  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM (SUBJECTIVE)|12 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equation by matrix method x+y-2z=1;x-y+z=0;2x+3y-4z=2

Solve the following system of equations by matrix method: 3x+4y-5=0,\ \ x-y+3=0

Solve the following system of equations by matrix method: x+y-z=3,2x+3y+z=10,3x-y-7z=1

Solve the following system of equations by matrix method: x+y+z=3,\ \ 2x-y+z=-1,\ \ 2x+y-3z=-9

Solve the following system of equations by matrix method: 5x+3y+z=16,2x+y+3z=19,x+2y+4z=25

Solve the following system of linear equations by matrix method: 2x+3y+3z=1,2x+2y+3z=2,x-2y+2z=3

Solve the following system of linear equations by matrix method: x+y+z=3,2x-y+z=2,x-2y=3z=2

solve the following system of equations by matrix method: x-3y-8z=-10 and 3x+y-4z=0 and 2x+5y-6z=13

Solve the system of equation by matrix method 2x+y+z=4 3x-2y+z=2 x-2y+z=0

Solve the following system of equations,using matrix method.x+2y+z=7,x+3z=11,2x-3y=1

FIITJEE-MATRICES -SOLVED PROBLEM
  1. If B is a real mxn matrix, show that B'B as well as BB'is a symmetric ...

    Text Solution

    |

  2. Solve the following system of equation by matrix method x + y - 2z = 1...

    Text Solution

    |

  3. Solve the following system of equation by matrix method x+2y +3z+1=...

    Text Solution

    |

  4. Find the values of lambda and mu so that the system of equations (i)...

    Text Solution

    |

  5. If A =[{:( 2,5,3),(3,1,2),(1,2,1) :}] then A^(-1) is equal to

    Text Solution

    |

  6. With the help of metrices the solution of the equations 3x+y+2z=3,2x-3...

    Text Solution

    |

  7. If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),(...

    Text Solution

    |

  8. If A and B are square matrices of order 3, then

    Text Solution

    |

  9. If A and B are any two square matrices of the same order than ,

    Text Solution

    |

  10. IF A = [{:( -2,3,-1),( -1,2,-1),( -6,9,-4) :}] and B = [{:( 1,3,-1),(...

    Text Solution

    |

  11. If A=[{:( 1,-tanx ),( tanx ,1):}] then the value of [A^(T) A^(-1) ] ...

    Text Solution

    |

  12. If A = [{:( alpha , 2),( 2,alpha ) :}] and |A^(3) | = 125 then the val...

    Text Solution

    |

  13. A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0...

    Text Solution

    |

  14. If A is a square matrix of order 5 and 9A^(-1) then [adj (adj AJJ] (...

    Text Solution

    |

  15. The set of natural numbers N is partitioned into arrays of rows and co...

    Text Solution

    |

  16. For what value of x, the matrix [{:( 3-x,2,2),( 2,4-x,1),(-2,-4,-1-x)...

    Text Solution

    |

  17. The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

    Text Solution

    |

  18. The system AX = B of n equation in n unknown has infinitely many solut...

    Text Solution

    |

  19. The number of matrices in A is

    Text Solution

    |

  20. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |