Home
Class 12
MATHS
With the help of metrices the solution o...

With the help of metrices the solution of the equations `3x+y+2z=3,2x-3y-z= 3 , x+2y+z=4 ` are given by

A

`x=1, y=2,z=-1`

B

`x=-1, y=2,z=1`

C

`x=1, y=-2,z=-1`

D

`x=-1, y=-2,z=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using matrices, we will follow these steps: ### Given Equations: 1. \(3x + y + 2z = 3\) 2. \(2x - 3y - z = 3\) 3. \(x + 2y + z = 4\) ### Step 1: Represent the equations in matrix form We can represent the equations in the form \(A \mathbf{x} = \mathbf{B}\), where: \[ A = \begin{pmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} \] ### Step 2: Find the inverse of matrix \(A\) To find \(\mathbf{x}\), we need to compute \(A^{-1}\). The formula for the inverse of a matrix is: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] #### Step 2.1: Calculate the determinant of \(A\) The determinant of \(A\) can be calculated as follows: \[ \text{det}(A) = 3 \cdot (-3) \cdot 1 + 1 \cdot (-1) \cdot 2 + 2 \cdot 2 \cdot 2 - (2 \cdot (-3) \cdot 2 + (-1) \cdot 1 \cdot 1 + 3 \cdot (-1) \cdot 1) \] Calculating each term: - \(3 \cdot (-3) \cdot 1 = -9\) - \(1 \cdot (-1) \cdot 2 = -2\) - \(2 \cdot 2 \cdot 2 = 8\) - \(2 \cdot (-3) \cdot 2 = -12\) - \((-1) \cdot 1 \cdot 1 = -1\) - \(3 \cdot (-1) \cdot 1 = -3\) Now, substituting these values into the determinant formula: \[ \text{det}(A) = -9 - 2 + 8 + 12 - 1 + 3 = 11 \] #### Step 2.2: Calculate the adjoint of \(A\) The adjoint of \(A\) is the transpose of the cofactor matrix. We will compute the cofactor matrix first. Calculating the cofactors: \[ C = \begin{pmatrix} (-3)(1) - (2)(-1) & -(2)(1) - (3)(2) & (2)(-3) - (1)(2) \\ -(1)(1) - (2)(-1) & (3)(1) - (2)(2) & -(3)(2) - (1)(1) \\ (1)(-1) - (3)(-3) & -(3)(-3) - (2)(2) & (3)(2) - (2)(1) \end{pmatrix} \] Calculating each cofactor: - \(C_{11} = -3 + 2 = -1\) - \(C_{12} = -2 - 6 = -8\) - \(C_{13} = -6 - 2 = -8\) - \(C_{21} = -1 + 2 = 1\) - \(C_{22} = 3 - 4 = -1\) - \(C_{23} = -6 - 1 = -7\) - \(C_{31} = -1 + 9 = 8\) - \(C_{32} = 9 - 4 = 5\) - \(C_{33} = 6 - 2 = 4\) Thus, the cofactor matrix is: \[ C = \begin{pmatrix} -1 & -8 & -8 \\ 1 & -1 & -7 \\ 8 & 5 & 4 \end{pmatrix} \] Now, taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -1 & 1 & 8 \\ -8 & -1 & 5 \\ -8 & -7 & 4 \end{pmatrix} \] #### Step 2.3: Calculate \(A^{-1}\) Now we can find \(A^{-1}\): \[ A^{-1} = \frac{1}{11} \begin{pmatrix} -1 & 1 & 8 \\ -8 & -1 & 5 \\ -8 & -7 & 4 \end{pmatrix} \] ### Step 3: Calculate \(\mathbf{x} = A^{-1} \mathbf{B}\) Now we can find \(\mathbf{x}\): \[ \mathbf{x} = A^{-1} \mathbf{B} = \frac{1}{11} \begin{pmatrix} -1 & 1 & 8 \\ -8 & -1 & 5 \\ -8 & -7 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} \] Calculating the product: 1. First row: \(-1 \cdot 3 + 1 \cdot 3 + 8 \cdot 4 = -3 + 3 + 32 = 32\) 2. Second row: \(-8 \cdot 3 - 1 \cdot 3 + 5 \cdot 4 = -24 - 3 + 20 = -7\) 3. Third row: \(-8 \cdot 3 - 7 \cdot 3 + 4 \cdot 4 = -24 - 21 + 16 = -29\) Thus, we have: \[ \mathbf{x} = \frac{1}{11} \begin{pmatrix} 32 \\ -7 \\ -29 \end{pmatrix} = \begin{pmatrix} \frac{32}{11} \\ -\frac{7}{11} \\ -\frac{29}{11} \end{pmatrix} \] ### Final Step: Result The solutions are: \[ x = \frac{32}{11}, \quad y = -\frac{7}{11}, \quad z = -\frac{29}{11} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-I)|12 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-II)|13 Videos
  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM (SUBJECTIVE)|12 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

The solutions of the equations x+2y+3z=14,3x+y+2z=11,2x+3y+z=11

The number of solutions of the equation.3x+3y-z=5,x+y+z=3,2x+2y-z=3

The solution of the system of equations is x-y+2z=1,2y-3z=1 and 3x-2y+4y=2 is

The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 are

Find the solution of given system of equations: 3x+4y+5z=38, 2x-y+8z=33, 4x+3y+2z=25

The equations x+2y+3z=1 2x+y+3z=1 5x+5y+9z=4

FIITJEE-MATRICES -SOLVED PROBLEM
  1. Find the values of lambda and mu so that the system of equations (i)...

    Text Solution

    |

  2. If A =[{:( 2,5,3),(3,1,2),(1,2,1) :}] then A^(-1) is equal to

    Text Solution

    |

  3. With the help of metrices the solution of the equations 3x+y+2z=3,2x-3...

    Text Solution

    |

  4. If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),(...

    Text Solution

    |

  5. If A and B are square matrices of order 3, then

    Text Solution

    |

  6. If A and B are any two square matrices of the same order than ,

    Text Solution

    |

  7. IF A = [{:( -2,3,-1),( -1,2,-1),( -6,9,-4) :}] and B = [{:( 1,3,-1),(...

    Text Solution

    |

  8. If A=[{:( 1,-tanx ),( tanx ,1):}] then the value of [A^(T) A^(-1) ] ...

    Text Solution

    |

  9. If A = [{:( alpha , 2),( 2,alpha ) :}] and |A^(3) | = 125 then the val...

    Text Solution

    |

  10. A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0...

    Text Solution

    |

  11. If A is a square matrix of order 5 and 9A^(-1) then [adj (adj AJJ] (...

    Text Solution

    |

  12. The set of natural numbers N is partitioned into arrays of rows and co...

    Text Solution

    |

  13. For what value of x, the matrix [{:( 3-x,2,2),( 2,4-x,1),(-2,-4,-1-x)...

    Text Solution

    |

  14. The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

    Text Solution

    |

  15. The system AX = B of n equation in n unknown has infinitely many solut...

    Text Solution

    |

  16. The number of matrices in A is

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  19. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  20. The number of right inverses for the matrix [{:( 1,-1,2),( 2,-1,1):}]

    Text Solution

    |