Home
Class 12
MATHS
A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}]...

`A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)]` then , the value of c and d are

A

`-6-11`

B

` 6,11`

C

`-6,11`

D

`6,-11`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( c \) and \( d \) given the matrix \( A \), the identity matrix \( I \), and the expression for \( A^{-1} \). ### Step 1: Calculate \( A^2 \) Given: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{pmatrix} \] To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{pmatrix} \] Calculating the elements: - First row: - \( (1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0) = 1 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot -2) = 0 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 4) = 0 \) - Second row: - \( (0 \cdot 1 + 1 \cdot 0 + 1 \cdot 0) = 0 \) - \( (0 \cdot 0 + 1 \cdot 1 + 1 \cdot -2) = -1 \) - \( (0 \cdot 0 + 1 \cdot 1 + 1 \cdot 4) = 5 \) - Third row: - \( (0 \cdot 1 + -2 \cdot 0 + 4 \cdot 0) = 0 \) - \( (0 \cdot 0 + -2 \cdot 1 + 4 \cdot -2) = -10 \) - \( (0 \cdot 0 + -2 \cdot 1 + 4 \cdot 4) = 14 \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -10 & 14 \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( A \) The determinant of \( A \) is calculated as follows: \[ \text{det}(A) = 1 \cdot (1 \cdot 4 - 1 \cdot -2) = 1 \cdot (4 + 2) = 6 \] ### Step 3: Find the Adjoint of \( A \) To find the adjoint, we need the cofactor matrix. The cofactor matrix \( C \) is calculated as follows: - For element \( a_{11} \): \( C_{11} = 4 + 2 = 6 \) - For element \( a_{12} \): \( C_{12} = 0 \) - For element \( a_{13} \): \( C_{13} = 0 \) - For element \( a_{21} \): \( C_{21} = 0 \) - For element \( a_{22} \): \( C_{22} = 0 \) - For element \( a_{23} \): \( C_{23} = 0 \) - For element \( a_{31} \): \( C_{31} = 4 \) - For element \( a_{32} \): \( C_{32} = -2 \) - For element \( a_{33} \): \( C_{33} = 1 \) Thus, the cofactor matrix is: \[ C = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 4 & -2 & 1 \end{pmatrix} \] The adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{pmatrix} 6 & 0 & 4 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Calculate \( A^{-1} \) Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{6} \cdot \begin{pmatrix} 6 & 0 & 4 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 0 & -\frac{1}{3} \\ 0 & 0 & \frac{1}{6} \end{pmatrix} \] ### Step 5: Set up the equation for \( A^{-1} \) Given: \[ A^{-1} = \frac{1}{6}(A^2 + cA + dI) \] Substituting the known values: \[ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 2 & 1 \end{pmatrix} = \frac{1}{6} \left( \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -10 & 14 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{pmatrix} + d \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right) \] ### Step 6: Compare coefficients From the equation, we can compare coefficients to find \( c \) and \( d \): 1. \( 1 + c + d = 6 \) 2. \( 4 + c = -1 \) 3. \( -10 + 4c + d = 14 \) From the second equation: \[ c = -1 - 4 = -5 \] Substituting \( c \) into the first equation: \[ 1 - 5 + d = 6 \implies d = 6 + 5 - 1 = 11 \] ### Final Values Thus, we find: \[ c = -5, \quad d = 11 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-I)|12 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-II)|13 Videos
  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM (SUBJECTIVE)|12 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

If A =[{:(2,0,0),(0,1,0),(0,0,1):}] then adj(A) =

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (=6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A = [{:( 0,0,0),( 1,0,0),(0,1,0):}] ,then

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

If A={:[(0,1,0),(1,0,0),(0,0,1)]:}," then "A^(-1)=

FIITJEE-MATRICES -SOLVED PROBLEM
  1. If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),(...

    Text Solution

    |

  2. If A and B are square matrices of order 3, then

    Text Solution

    |

  3. If A and B are any two square matrices of the same order than ,

    Text Solution

    |

  4. IF A = [{:( -2,3,-1),( -1,2,-1),( -6,9,-4) :}] and B = [{:( 1,3,-1),(...

    Text Solution

    |

  5. If A=[{:( 1,-tanx ),( tanx ,1):}] then the value of [A^(T) A^(-1) ] ...

    Text Solution

    |

  6. If A = [{:( alpha , 2),( 2,alpha ) :}] and |A^(3) | = 125 then the val...

    Text Solution

    |

  7. A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0...

    Text Solution

    |

  8. If A is a square matrix of order 5 and 9A^(-1) then [adj (adj AJJ] (...

    Text Solution

    |

  9. The set of natural numbers N is partitioned into arrays of rows and co...

    Text Solution

    |

  10. For what value of x, the matrix [{:( 3-x,2,2),( 2,4-x,1),(-2,-4,-1-x)...

    Text Solution

    |

  11. The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

    Text Solution

    |

  12. The system AX = B of n equation in n unknown has infinitely many solut...

    Text Solution

    |

  13. The number of matrices in A is

    Text Solution

    |

  14. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  17. The number of right inverses for the matrix [{:( 1,-1,2),( 2,-1,1):}]

    Text Solution

    |

  18. Let A=[{:(x^(2),6,8),(3,y^(2),9),(4,5,z^(2)):}],B=[{:(2x,3,5),(2,2y,6)...

    Text Solution

    |

  19. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  20. If A=[1 0-1 7] , find k such that A^2-8A+k I=O .

    Text Solution

    |