Home
Class 12
MATHS
If A = [{:( 0,0,0),( 1,0,0),(0,1,0):}] ,...

If A = `[{:( 0,0,0),( 1,0,0),(0,1,0):}]` ,then

A

`A^(2) =A `

B

` A^(2) = 0`

C

` A^(2)= I`

D

`A^(3) = O`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^2 \) and \( A^3 \) for the given matrix \( A \). Given: \[ A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we perform matrix multiplication \( A \cdot A \). \[ A^2 = A \cdot A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \] Calculating each element of \( A^2 \): - First row: - First element: \( 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Second element: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Third element: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Second row: - First element: \( 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Second element: \( 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Third element: \( 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Third row: - First element: \( 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 = 1 \) - Second element: \( 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0 \) - Third element: \( 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 0 \) Thus, we have: \[ A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now, we need to find \( A^3 \) by multiplying \( A^2 \) with \( A \). \[ A^3 = A^2 \cdot A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \] Calculating each element of \( A^3 \): - First row: - First element: \( 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Second element: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Third element: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Second row: - First element: \( 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Second element: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Third element: \( 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) - Third row: - First element: \( 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \) - Second element: \( 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0 \) - Third element: \( 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \) Thus, we have: \[ A^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Final Results 1. \( A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \) 2. \( A^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (OBJECTIVE) (Level-II)|17 Videos
  • MATRICES

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-II)|13 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

If A = [{:( 0,0,0),(0,0,0) ,(0,1,0):}] ,then A is

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A =[{:(2,0,0),(0,1,0),(0,0,1):}] then adj(A) =

If A={:[(0,0,0),(0,0,0),(1,0,0)]:} , then

If A={:[(0,1,0),(1,0,0),(0,0,1)]:}," then "A^(-1)=

Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] . Then the matrix p^(3) + 2P^(2) is equal to

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is

If, E=[(0,1,0),(0,0,1),(0,0,0)]and F=[(0,0,0),(1,0,0),(0,1,0)] calculate the matrix product EF & FE and show that E^(2)F+FE^(2)=E .

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

FIITJEE-MATRICES -ASSIGNMENT PROBLEM (OBJECTIVE) (Level-I)
  1. Let the matrices A=[{:( sqrt3,-2),(0,1):}] and P be any orthogonal mat...

    Text Solution

    |

  2. A, B, C are three non-zero matrices such that ABC = O, which of the fo...

    Text Solution

    |

  3. If A = [{:( 0,0,0),( 1,0,0),(0,1,0):}] ,then

    Text Solution

    |

  4. If A = [{:( 0,0,0),(0,0,0) ,(0,1,0):}] ,then A is

    Text Solution

    |

  5. If A and B are symmetric matrices of the same order then (A) A-B is sk...

    Text Solution

    |

  6. If A any square matrix then

    Text Solution

    |

  7. If A is a square matrix such that A^(3) =I then the value of A^(-1) ...

    Text Solution

    |

  8. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  9. If P and Q are symmetric matrices and PQ=QP then which of the followin...

    Text Solution

    |

  10. If A is skew symmetric matrix, then I - A is (where I is identity matr...

    Text Solution

    |

  11. If A=[(4,2),(-1,1)] then (A-21) (A-3I)=

    Text Solution

    |

  12. If A =[{:( a,x,y),( x,b,z),( y,z,c) :}] : a,b,c,x,y,z, "in" (1,2,3,4...

    Text Solution

    |

  13. If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of ...

    Text Solution

    |

  14. Let A is a matrix of order 100xx 50 and B is matrix of order 50xx 75...

    Text Solution

    |

  15. Let Mn =[mg] denotes a square matrix of order n with entries as follow...

    Text Solution

    |

  16. Let A be a 2xx 2 matrix with real entries and det (A)= d ne 0 such ...

    Text Solution

    |

  17. If alpha be the set of integral values of c for which the equations c...

    Text Solution

    |

  18. If A and B matrices commute then

    Text Solution

    |

  19. If A, B, C are invertible matrices, then (ABC)^(-1)=

    Text Solution

    |

  20. If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:}, then A^2 is equal to

    Text Solution

    |