Home
Class 12
MATHS
The value of ^n C1+^(n+1)C2+^(n+2)C3++^(...

The value of `^n C_1+^(n+1)C_2+^(n+2)C_3++^(n+m-1)C_m` is equal to (a)`^m+n C_(n-1)` (b)`^m+n C_(n-1)` (c)`^mC_(1)+^(m+1)C_2+^(m+2)C_3++^(m+n-1)` (d)`^m+1C_(m-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1

If m=""^(n)C_(2) , then ""^(m)C_(2) is equal to a) 3""^(n)C_(4) b) ""^(n+1)C_(4) c) 3""^(n+1)C_(4) d) 3""^(n+1)C_(3)

If ^(m)C_(1)=^(n)C_(2) then 2m=nb2m=n(n+1) c.2m=(n-1)d2n=m(m-1)

^(n)C_(m)+^(n-1)C_(m)+^(n-2)C_(m)+............+^(m)C_(m)

Prove that mC_(1)^(n)C_(m)-^(m)C_(2)^(2n)C_(m)+^(m)C_(3)^(3n)C_(m)-...=(-1)^(m-1)n^(m)

(.^(n)C_0+.^(n+1)C_1+.^(n+2)C_2+....+.^(n+m)C_m)/(.^(m)C_0+(.^(m)C_1)+(.^(m+1)C_2)+...+(.^(m+n)C_(n+1)) (A) 1 (B) 2 (C) 3 (D) 4

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot