Home
Class 12
MATHS
If Sn=^nC0.^nC1+^nC1.^nC2+.....+^nC(n-1)...

If `S_n=^nC_0.^nC_1+^nC_1.^nC_2+.....+^nC_(n-1).^nC_n` and if `S_(n+1)/S_n=15/4` , then the sum of all possible values of n is (A) `2` (B) `4` (C) `6` (D) `8`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of nC_0. ^nC_n +^nC_1 . ^nC_(n-1)++……..+^nC_n . ^nC_0

If s_n=""^nC_0+2*""^nC_1+3*""^nC_2+...+(n+1)*""^nC_n then find sum_(n=1)^oos_n .

The value of ""^0C_0-^nC_1+^nC_2-....+ -1^(n^n)C_n is

If .^nC_(n-4)=15 , find .^nC_6

Let S=2/1 ^nC_0+2^2/2 ^nC_1+2^3/3 ^nC_2+....+2^(n+1)/(n+1) ^nC_n . Then S equals

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

Prove that ""^nC_0+3""^nC_1+5""^nC_2+........+(2n+1)""^nC_n= (n+1)2^n .

If .^nC_0,^nC_1,^nC_2,.....^nC_n are frequencies of n+1 observations 1,2,2^2,.....2^n such that mean is 729/2^n then value of n is:

1/2. ""^nC_0 + ""^nC_1 + 2. ""^nC_2 + 2^2. ""^nC_3 + …….+ 2^(n-1) . ""^nC_n =