Home
Class 11
MATHS
Prove that: (i) sec^(4)A-sec^(2)A="ta...

Prove that:
(i) `sec^(4)A-sec^(2)A="tan"^(4)A+"tan"^(2)A`
(ii) `"sin"^(8)theta-cos^(8)theta=("sin"^(2)theta-cos^(2)theta)(1-2"sin"^(2)thetacos^(2)theta)`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (i): Prove that \( \sec^4 A - \sec^2 A = \tan^4 A + \tan^2 A \) **Step 1:** Start with the left-hand side (LHS): \[ \sec^4 A - \sec^2 A \] **Step 2:** Factor out \( \sec^2 A \) from the LHS: \[ \sec^2 A (\sec^2 A - 1) \] **Step 3:** Use the identity \( \sec^2 A - 1 = \tan^2 A \): \[ \sec^2 A \tan^2 A \] **Step 4:** Rewrite \( \sec^2 A \) in terms of \( \tan^2 A \): \[ \sec^2 A = 1 + \tan^2 A \] **Step 5:** Substitute this back into the equation: \[ (1 + \tan^2 A) \tan^2 A \] **Step 6:** Distribute \( \tan^2 A \): \[ \tan^2 A + \tan^4 A \] **Step 7:** Rearrange the terms: \[ \tan^4 A + \tan^2 A \] **Conclusion:** The left-hand side equals the right-hand side: \[ \sec^4 A - \sec^2 A = \tan^4 A + \tan^2 A \] Thus, the equation is proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|48 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT EXAMPLES|6 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.

sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)=1

tan^(2)theta-sin^(2)theta=sin^(4)theta sec^(2)theta

(sec^(2)theta-sin^(2)theta)/(tan^(2)theta)=cosec^(2)theta-cos^(2)theta

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

Value of sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta) is

(1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta

Prove that : sec^(2)theta - cos^(2) theta = sin^(2)theta(sec^(2)theta + 1)

(8sec^(4)theta-8tan^(4)theta)/(4+8tan^(2)theta)-(2cos^(6)theta+2sin^(6)theta)/(1-3sin^(2)theta cos^(2)theta)