Home
Class 11
MATHS
if m=tanx+sinx and n=tanx-sinx then pr...

if `m=tanx+sinx and n=tanx-sinx` then prove that `m^2-n^2=4sqrt(mn)`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|48 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT EXAMPLES|6 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

if m=tan x+sin x and n=tan x-sin x then prove that m^(2)-n^(2)=4sqrt(mn)

sinxtanx-1=tanx-sinx

sinxtanx-1=tanx-sinx

If tantheta+sintheta=m and tantheta-sintheta=n , then prove that: m^(2)-n^(2)=4sqrt(mn)

If tan theta+sin theta=m and tan theta-sin theta=n then prove m^(2)-n^(2)=4sqrt(mn)

If cot theta + cos theta = m and cot theta - cos theta = n then prove that: m^(2) - n^(2) = 4sqrt(mn)

If tan theta+sin theta=m and tan theta-sin theta=n show m^(2-)n^(2)=4sqrt(mn)

If tan theta+sin theta=m and tan theta-sin theta=n then m^(2)-n^(2)=4mn(b)m^(2)+n^(2)=4mnm^(2)-n^(2)=m^(2)+n^(2)(d)m^(2)-n^(2)=4sqrt(mn)

If y=sin(sinx) then prove that y_2+(tanx)y_1+ycos^2x=0

If cottheta(1+sintheta)=4m and cottheta(1-sintheta)=4 n, then prove that: (m^(2)-n^(2))^(2)=mn