Home
Class 11
MATHS
The equation sin^2theta=(x^2+y^2)/(2x y)...

The equation `sin^2theta=(x^2+y^2)/(2x y),x , y!=0` is possible if

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|48 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT EXAMPLES|6 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

The equation sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

If x and y be real,then the equation sin^(2)theta=(x^(2)+y^(2))/(2xy) has solution

Show that sin^(2)theta=(x^(2)+y^(2))/(2xy) is possible for real value of x and y only when x=y!=0

Show that the equation sec^(2)theta=(4xy)/((x+y)^(2)) is only possible when x=y

Prove that sin^(2)theta=((x+y)^(2))/(4)xy is possible for real values of x and y only when x=y and x!=0.

If x and y are real numbers such that sin^2theta=(x^2+y^2)/(2xy) show that x=y .

If sin^(2)theta=(x^(2)+y^(2)+1)/(2x) . Find the value of x and y.

The equation (x+y)^(2)-(x^(2)+y^(2))=0 represents