Home
Class 11
MATHS
Show that 2"sin"^(2)beta+4 cos(alpha+...

Show that
`2"sin"^(2)beta+4 cos(alpha+beta)"sin" alpha sin beta+cos2(alpha+beta)=cos 2alpha`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(a) Short Answer type Question|13 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(a) Long Answer type Question-II|1 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|48 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

Prove that 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=cos2 alpha

Simplify 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)

2sin^(2)beta+4cos(alpha+beta)sinalphasinbeta+cos2(alpha+beta)=?

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

sin ^ (2) alpha + cos ^ (2) (alpha + beta) + 2 sin alpha sin beta cos (alpha + beta) = (i) sin ^ (2) (alpha) (ii) sin ^ (2) (beta ) (iii) cos ^ (2) (alpha) (iv) cos ^ (2) (beta)