Home
Class 11
MATHS
Show that the equation sec^2 theta=(4xy)...

Show that the equation `sec^2 theta=(4xy)/(x+y)^2` is only possible when x=y

Answer

Step by step text solution for Show that the equation sec^2 theta=(4xy)/(x+y)^2 is only possible when x=y by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(c) Long Answer type Question-II|2 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(d) Short Answer type Question|9 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(c) Short Answer type Question|7 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that the relation sin^(2)theta = (x+y)^(2)/4xy is not 4xy possible for any real theta where x in R , y in R such that |x | ne ly| .

For any real numbers x and y, sec^(2)theta=(4xy)/((x+y)^(2)) is possible when

Knowledge Check

  • sec^(2) theta =(4xy)/((x+y)^(2)) is true, if

    A
    `x+y ne 0`
    B
    `x = y, x ne 0`
    C
    `x=y`
    D
    `x ne 0, y =0`
  • The equation sin^(2) theta = ( x^(2) + y^(2))/(2xy) is possible if

    A
    x=y
    B
    x= - y
    C
    2x=y
    D
    none of these
  • sec^20 =(4xy)/(x+y)^2 is true, if and only if

    A
    `x+y!=0`
    B
    `x=y,x!=0,y!=0`
    C
    `x=y`
    D
    `x!=0,y!=0`
  • Similar Questions

    Explore conceptually related problems

    The equation sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

    sec^(2)theta = 4xy/(x+y)^(2) is true if and only if

    cos ec^(2)theta=(4xy)/((x+y)^(2)) is true if and only if

    Show that sin^(2)theta=(x^(2)+y^(2))/(2xy) is possible for real value of x and y only when x=y!=0

    sec^(2) theta = ( 4xy )/( ( x+ y )^(2)) is true if and only if