Home
Class 11
MATHS
Prove the following: ("sin" 11A sin A...

Prove the following:
`("sin" 11A sin A+"sin" 7A sin 3A)/(cos 11A sin A+cos 7A sin 3A)="tan" 8A`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( f)Long Answer type Question-II|2 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(g)Short Answer type Question|4 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( f)Short Answer type Question|5 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that: quad (sin11As in A+s in7As in3A)/(cos11As in A+cos7A sin3A)=tan8A

(sin A sin2A + sin3A sin6A) / (sin A cos2A + sin3A cos6A) = tan5A

8. (sin3A + sin A) sin A + (cos3A-cos A) cos A = 0

(cos 7A + cos 5A)/(sin 7A-sin 5A)=

(sin A sin2A + sin3A sin6A + sin4A sin13A) / (sin A cos2A + sin3A cos6A + sin4A cos13A) = tan9A

Prove the following identities: (cos A)/(1-sin A)+(sin A)/(1-cos A)+1=(sin A cos A)/((1-sin A)(1-cos A))((1+cot A+tan A)(sin A-cos A)/(sec^(3)A-cos ec^(3)A)=sin^(2)A cos^(2)A

(sin A+sin3A)/(cos A+cos3A)=tan2A

(sin A+sin3A+sin5A+sin7A)/(cos A+cos3A+cos5A+cos7A)=tan4A

(sin3A+sin5A+sin7A+sin9A)/(cos3A+cos5A+cos7A+cos9A)=tan6A

Prove the following identities: (cos A)/(1-tan A)+(sin^(2)A)/(sin A-cos A)=sin A+cos A