Home
Class 11
MATHS
Prove that: "sin" 4A=4 sin A cos^(3)...

Prove that:
`"sin" 4A=4 sin A cos^(3)A-4 cos A "sin"^(3)A`.

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(h)Short Answer type Question|3 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(h)Long Answer type Question-I|1 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(g)Short Answer type Question|4 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

sin4A = 4sin A cos ^ (3) A-4cos A sin ^ (3) A

sin4A = 4sin A * cos ^ (3) A-4cos A * sin ^ (3) A

sin4x=4sin x cos^(3)x-4cos x sin^(3)x

sin4A=4cos^(3)A sin A-4sin^(3)A cos A

Prove that: (sin3A+sin A)sin A+(cos3A-cos A)cos A=0

The value of 4 sin A cos^(3) A- 4 cos A sin^(3) A is equal to

Prove that (sin A+cos A)(1-sin A cos A)=sin^(3)A+cos^(3)A

Prove that: sin2A+2sin4A+sin6A=4cos^(2)A.sin4A

Prove that: sin theta cos^(3)theta-cos theta sin^(3)theta=(1)/(4)sin4 theta

Prove that sin theta cos^(3)theta - cos theta sin^(3) theta = (1)/(4) sin 4 theta .