Home
Class 11
MATHS
if A+B+C=pi then cosA/(sinBsinC)+cosB/...

if `A+B+C=pi` then `cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(i)Long Answer type Question-II|1 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(J)Long Answer type Question-I|3 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(h)Long Answer type Question-II|1 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : (cosA)/(sinBsinC) + (cosB)/(sinC sinA) + (cosC)/(sinA sinB) =2 .

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

Prove that: (sin(A-B))/(sinAsinB)=(sinAcosB-cosAsinB)/(sinAsinB) (sinAcosB)/(sinAsinB)-(cosAsinB)/(sinCsinA) =cotB-cotA-cotC =0 = RHS Hence Proved.

If A+B+C=pi, prove that sin2A-sin2B+sin2C=4cosA sin B cosC .

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

In triangleABC, (cosA)/(c cosB+bcosC)+(cosB)/(acosC+ccosA)+(cosC)/(acosB+bcosA)=

If A+B+C=180 , prove that: sinA+sinB+sinC=4cosA/2cosB/2cosC/2

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1