Home
Class 11
MATHS
cos((3pi)/(2)-x) equals:...

`cos((3pi)/(2)-x)` equals:

A

cos x

B

sin x

C

`-cos x`

D

`-"sin" x`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTIONS)|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(o)Long Answer type Question-I|15 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

cos((pi)/(2)+x) is equal to:

cos((pi)/(2)+x) is equal to:

The expression (tan(x-(pi)/(2))cos((3 pi)/(2)+x)-sin^(3)((7 pi)/(2)-x))/(cos(x-(pi)/(2))tan((3 pi)/(2)+x)) is equal to

lim_(x rarr(pi)/(2))(cot x-cos x)/((pi-2x)^(3)) equals

(1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is equal to

If f(x)=|cos x|, then f' ((3pi)/(4)) is equal to

The value of |(cos.(2pi)/(63),cos.(3pi)/(70),cos.(4pi)/(77)),(cos.(pi)/(72),cos.(pi)/(40),cos.(3pi)/(88)),(1,cos.(pi)/(90),cos.(2pi)/(99))| is equal to

The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x)) simplifies to

If tan((2 pi)/(3)-x)=(sin(2(pi)/(3)-sin2x))/(cos(2(pi)/(3)-cos2x)) where 0