Home
Class 11
MATHS
cos((pi)/(2)+x)is equal to:...

`cos((pi)/(2)+x)`is equal to:

A

`sin x`

B

cos x

C

`-"sin" x`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos\left(\frac{\pi}{2} + x\right) \), we can use the trigonometric identity for cosine of a sum. ### Step-by-Step Solution: 1. **Use the Cosine Addition Formula:** The cosine of the sum of two angles can be expressed using the formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Here, let \( A = \frac{\pi}{2} \) and \( B = x \). 2. **Substitute the Values:** Substitute \( A \) and \( B \) into the formula: \[ \cos\left(\frac{\pi}{2} + x\right) = \cos\left(\frac{\pi}{2}\right) \cos(x) - \sin\left(\frac{\pi}{2}\right) \sin(x) \] 3. **Evaluate \( \cos\left(\frac{\pi}{2}\right) \) and \( \sin\left(\frac{\pi}{2}\right) \):** From trigonometric values, we know: \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \sin\left(\frac{\pi}{2}\right) = 1 \] 4. **Substitute These Values:** Now substitute these values back into the equation: \[ \cos\left(\frac{\pi}{2} + x\right) = 0 \cdot \cos(x) - 1 \cdot \sin(x) \] Simplifying this gives: \[ \cos\left(\frac{\pi}{2} + x\right) = -\sin(x) \] ### Final Answer: Thus, the expression \( \cos\left(\frac{\pi}{2} + x\right) \) is equal to: \[ -\sin(x) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTIONS)|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(o)Long Answer type Question-I|15 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

cos((3pi)/(2)-x) equals:

The expression (tan(x-(pi)/(2))cos((3 pi)/(2)+x)-sin^(3)((7 pi)/(2)-x))/(cos(x-(pi)/(2))tan((3 pi)/(2)+x)) is equal to

cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equal to

If f(x)=|cos x-sin x|, then f'((pi)/(2)) is equal to

If f(x)=cos[pi]x+cos[pi x], where [y] is the greatest integer function of y then f((pi)/(2)) is equal to

The soluation set of inequality (sin x+cos^(-1)x)-(cos x-sin^(-1)x)>=(pi)/(2) is equal to

lim_(x rarr(pi)/(2))[(x-(pi)/(2))/(cos x)] is equal to (where [*]

If [.] denotes the greatest integer function , then lim_(xrarr pi//2)[(x-(pi)/(2))/(cos x)] is equal to.

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)