Home
Class 11
MATHS
2 cos x cos y is equal to:...

`2 cos x cos y` is equal to:

A

`cos(x+y)+cos(x-y)`

B

`cos(x+y)-cos(x-y)`

C

`"sin"(x+y)-"sin"(x-y)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \cos x \cos y \), we can use the trigonometric identity for the product of cosines. Here’s the step-by-step solution: ### Step 1: Recall the Trigonometric Identity We start with the identity for the product of cosines: \[ \cos A \cos B = \frac{1}{2} (\cos(A + B) + \cos(A - B)) \] In our case, let \( A = x \) and \( B = y \). Therefore, we can rewrite \( 2 \cos x \cos y \) as follows: \[ 2 \cos x \cos y = 2 \cdot \frac{1}{2} (\cos(x + y) + \cos(x - y)) \] ### Step 2: Simplify the Expression Now, simplifying the expression: \[ 2 \cos x \cos y = \cos(x + y) + \cos(x - y) \] ### Conclusion Thus, we find that: \[ 2 \cos x \cos y = \cos(x + y) + \cos(x - y) \] ### Final Answer The expression \( 2 \cos x \cos y \) is equal to \( \cos(x + y) + \cos(x - y) \), which corresponds to option 1. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTIONS)|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(o)Long Answer type Question-I|15 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If x+y=z then cos^(2)x+cos^(2)y+cos^(2)z-2cos x cos y cos z is equal to

If sin^(4)x+cos^(4)y+2=4sin x cos y then the value of sin x+cos y is equal to

If cos(x-y)=a cos(x+y), then cot x cot y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^(4)x+cos^(4)y+2=4sin x*cos y and 0<=x,y<=(pi)/(2) then sin x+cos y is equal to

If sin x + sin y = a and cos x + cos y = b , what is sin x.sin y + cos x .cos y equal to ?