Home
Class 11
MATHS
The minimum value of a sin theta+b cos t...

The minimum value of `a sin theta+b cos theta` is:

A

`sqrt(a^(2)+b^(2))`

B

`-sqrt(a^(2)-b^(2))`

C

`-sqrt(a^(2)+b^(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( a \sin \theta + b \cos \theta \), we can use the following steps: ### Step 1: Identify the expression The expression we are dealing with is: \[ f(\theta) = a \sin \theta + b \cos \theta \] ### Step 2: Use the formula for maximum and minimum values The maximum and minimum values of the expression \( a \sin \theta + b \cos \theta \) can be derived using the formula: \[ \text{Maximum value} = \sqrt{a^2 + b^2} \] \[ \text{Minimum value} = -\sqrt{a^2 + b^2} \] ### Step 3: Apply the formula For our expression \( f(\theta) = a \sin \theta + b \cos \theta \): - The minimum value is: \[ \text{Minimum value} = -\sqrt{a^2 + b^2} \] ### Step 4: Conclusion Thus, the minimum value of \( a \sin \theta + b \cos \theta \) is: \[ -\sqrt{a^2 + b^2} \] ### Final Answer: The minimum value of \( a \sin \theta + b \cos \theta \) is \( -\sqrt{a^2 + b^2} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTIONS)|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(o)Long Answer type Question-I|15 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

The minimum value of sin^2 theta + cos^4 theta is

The Maximum value of a sin theta+b cos theta is:

The minimum value of 2 sin^2 theta + 3cos^2 theta is

The minimum value of 24sin theta-7cos theta is

The extreme values of a sin theta-b cos theta

If 0

If range of sin^(2)theta+cos^(4)theta is [k_(1),k_(2)], then the minimum value of cos2 theta+4cos theta+4 is

The minimum value of (cos theta-sin theta) is