Home
Class 11
MATHS
"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan...

`"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2)`is:

A

`(1)/(2)`

B

`-(1)/(2)`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2\left(\frac{\pi}{6}\right) + \cos^2\left(\frac{\pi}{3}\right) - \tan^2\left(\frac{\pi}{4}\right) + \frac{1}{2} \), we will calculate each term step by step. ### Step 1: Calculate \( \sin^2\left(\frac{\pi}{6}\right) \) We know that: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Thus, \[ \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 2: Calculate \( \cos^2\left(\frac{\pi}{3}\right) \) We know that: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Thus, \[ \cos^2\left(\frac{\pi}{3}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 3: Calculate \( \tan^2\left(\frac{\pi}{4}\right) \) We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, \[ \tan^2\left(\frac{\pi}{4}\right) = 1^2 = 1 \] ### Step 4: Substitute the values into the expression Now, substituting the calculated values into the original expression: \[ \sin^2\left(\frac{\pi}{6}\right) + \cos^2\left(\frac{\pi}{3}\right) - \tan^2\left(\frac{\pi}{4}\right) + \frac{1}{2} \] becomes: \[ \frac{1}{4} + \frac{1}{4} - 1 + \frac{1}{2} \] ### Step 5: Simplify the expression Now, let's simplify: \[ \frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2} \] So the expression now is: \[ \frac{1}{2} - 1 + \frac{1}{2} \] This simplifies to: \[ \frac{1}{2} + \frac{1}{2} - 1 = 1 - 1 = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTIONS)|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(o)Long Answer type Question-I|15 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

" 1.Prove that : "sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)

Prove that: (sin^(2)pi)/(6)+(cos^(2)pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)

Knowledge Check

  • The value of "tan"^(2)(pi)/3+2"cos"^(2)(pi)/4+3"sec"^(2)(pi)/6+4"cos"^(2)(pi)/2 is

    A
    2
    B
    4
    C
    6
    D
    8
  • Similar Questions

    Explore conceptually related problems

    sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)-(1)/(2)(pi)/(4)=-(1)/(2)

    Find the value of the sin^(2)((pi)/(6))+cos^(2)((pi)/(3))-tan^(2)((pi)/(4))

    Show / Prove/ Verify the following : (sin^(2)""(pi)/(6)+cos^(2)""(pi)/(3)+tan^(2)""(pi)/(6))/(sec^(2)""(pi)/(4)-cos^(2)pi)=(1)/(3).cos""(pi)/(3)+(1)/(sqrt3)sec""(pi)/(6)

    (sec^(2)(pi)/(4)-cot^(2)(pi)/(4))/(sin^(2)(pi)/(3)+cos^(2)(pi)/(6))+(sin^(2)(pi)/(2)-cos^(2)(pi)/(3))/((1)/(4)tan^(2)(pi)/(6))=9(2)/(3)

    Prove that (a) sin^(2)(pi/6) + cos^(2)( pi/3) - tan^(2)(pi/4) = -1/2 (b) sin((8pi)/3) cos((23pi)/6) + cos((13pi)/3) sin((35pi)/6) = 1/2

    2sin^(2)((pi)/(6))+cos ec^(2)(7(pi)/(6))(cos^(2)pi)/(3)=(3)/(2)

    2(sin^(2)(pi/6)) +"cosec"(7pi)/(6)cos^(2)pi/3=3/2