Home
Class 11
MATHS
Prove that 3"cos"^2 (pi)/(4)+sec^(2)(pi/...

Prove that `3"cos"^2 (pi)/(4)+sec^(2)(pi/3)+5 "tan"^(2)(pi)/(3)=(41)/(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ 3 \cos^2 \left( \frac{\pi}{4} \right) + \sec^2 \left( \frac{\pi}{3} \right) + 5 \tan^2 \left( \frac{\pi}{3} \right) = \frac{41}{2} \] we will calculate each term step by step. ### Step 1: Calculate \( \cos^2 \left( \frac{\pi}{4} \right) \) We know that: \[ \cos \left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \] Thus, \[ \cos^2 \left( \frac{\pi}{4} \right) = \left( \frac{1}{\sqrt{2}} \right)^2 = \frac{1}{2} \] ### Step 2: Calculate \( 3 \cos^2 \left( \frac{\pi}{4} \right) \) Now, substituting the value we found: \[ 3 \cos^2 \left( \frac{\pi}{4} \right) = 3 \times \frac{1}{2} = \frac{3}{2} \] ### Step 3: Calculate \( \sec^2 \left( \frac{\pi}{3} \right) \) We know that: \[ \sec \left( \frac{\pi}{3} \right) = \frac{1}{\cos \left( \frac{\pi}{3} \right)} = \frac{1}{\frac{1}{2}} = 2 \] Thus, \[ \sec^2 \left( \frac{\pi}{3} \right) = 2^2 = 4 \] ### Step 4: Calculate \( \tan^2 \left( \frac{\pi}{3} \right) \) We know that: \[ \tan \left( \frac{\pi}{3} \right) = \sqrt{3} \] Thus, \[ \tan^2 \left( \frac{\pi}{3} \right) = \left( \sqrt{3} \right)^2 = 3 \] ### Step 5: Calculate \( 5 \tan^2 \left( \frac{\pi}{3} \right) \) Now substituting the value we found: \[ 5 \tan^2 \left( \frac{\pi}{3} \right) = 5 \times 3 = 15 \] ### Step 6: Combine all the values Now we can combine all the calculated values: \[ 3 \cos^2 \left( \frac{\pi}{4} \right) + \sec^2 \left( \frac{\pi}{3} \right) + 5 \tan^2 \left( \frac{\pi}{3} \right) = \frac{3}{2} + 4 + 15 \] ### Step 7: Convert all terms to a common denominator To add these fractions, we convert all terms to have a common denominator of 2: \[ \frac{3}{2} + 4 + 15 = \frac{3}{2} + \frac{8}{2} + \frac{30}{2} = \frac{3 + 8 + 30}{2} = \frac{41}{2} \] ### Conclusion Thus, we have shown that: \[ 3 \cos^2 \left( \frac{\pi}{4} \right) + \sec^2 \left( \frac{\pi}{3} \right) + 5 \tan^2 \left( \frac{\pi}{3} \right) = \frac{41}{2} \] Hence proved. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (VERY SHORT ANSWER TYPE QUESTIONS)|18 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.1)|7 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

" 1.Prove that : "sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)

"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

Prove that: (sin^(2)pi)/(6)+(cos^(2)pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)

Prove that (a) sin^(2)(pi/6) + cos^(2)( pi/3) - tan^(2)(pi/4) = -1/2 (b) sin((8pi)/3) cos((23pi)/6) + cos((13pi)/3) sin((35pi)/6) = 1/2

sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)-(1)/(2)(pi)/(4)=-(1)/(2)

Prove that: (a) 2sin^(2)(pi/2) + "cosec"^(2)((7pi)/2) cos^(2)(pi/3)=(3/2)^2 (b) 2sin^(2)((3pi)/4)+2cos^(2)(pi/4)+2sec^(2)(pi/3)=10

Prove that: cos^(2)A+cos^(2)(A+(2 pi)/(3))+cos^(2)(A-(2 pi)/(3))=(3)/(2)

Prove that: 2sin^(2)(3(pi)/(4))+2cos^(2)((pi)/(4))+2sec^(2)((pi)/(3))=10

Prove that: 2cos (pi)/(13) cos (9 pi)/(13)(3 pi)/(13)(5 pi)/(13)=0