Home
Class 11
MATHS
sin^(2)6x-sin^(2)4x=sin2xsin10x...

`sin^(2)6x-sin^(2)4x=sin2xsin10x`

Text Solution

Verified by Experts

The correct Answer is:
RHS
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.4)|7 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on chapter (3)|9 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.2)|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)6x-sin^(2)4x=sin2x sin10x

Prove that: sin^(2)6x-sin^(2)4x=s in2xs in10x

sin ^ (2) 6x-sin ^ (2) 4x = sin2x sin10x

Prove that: (i) "sin"^(2)6x-"sin"^(2)4x="sin" 2x sin 10x (ii) cos^(2)2x-cos^(2)6x="sin" 4x sin 8x .

f(x)=([1+sin^(2)x,cos^(2)x,4sin2xsin^(2)x,1+cos^(2)x,4sin2xsin^(2)x,cos^(2)x,1+4sin2x])

Prove that: cos^(2)2x-cos^(2)6x=sin4x sin8x

The value of (cos^(4)x+cos^(2)xsin^(2)x+sin^(2)x)/(cos^(2)x+sin^(2)xcos^(2)x+sin^(4)x) is __________.

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?