Home
Class 11
MATHS
Prove the following cos^(2)2x-cos^(2)6x=...

Prove the following `cos^(2)2x-cos^(2)6x="sin"4x"sin"8x`

Text Solution

Verified by Experts

The correct Answer is:
RHS
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.4)|7 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on chapter (3)|9 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.2)|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)2x-cos^(2)6x=sin4x sin8x

Prove that: cos^(2)2x-cos^(2)6x=s in4xs in8x

Prove that: (i) "sin"^(2)6x-"sin"^(2)4x="sin" 2x sin 10x (ii) cos^(2)2x-cos^(2)6x="sin" 4x sin 8x .

Prove that :cos4x=1-8sin^(2)x cos^(2)x

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

Prove that: sin^(2)6x-sin^(2)4x=sin2x sin10x

Prove that: ,,(sin x-sin3x)/(sin^(2)x-cos^(2)x)=2sin x