Home
Class 11
MATHS
Prove the following "sin"2x+2"sin"4x+"si...

Prove the following `"sin"2x+2"sin"4x+"sin"6x=4cos^(2)x"sin"4x`

Text Solution

Verified by Experts

The correct Answer is:
`=4cos^(2)x"sin"4x=RHS`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.4)|7 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on chapter (3)|9 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.2)|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

sin2x+2sin4x+sin6x= 4cos^(2)xsin4x

Prove that: sin2x+2sin4x+sin6x=4cos^(2)x sin4x

Prove that: quad sin2x+2sin4x+sin6x=4cos^(2)x sin4

Prove the following Identities sin x +sin 2x + sin 4x +sin 5x = 4 cos(x/2).cos((3x)/2)sin3x

Prove the following Identities (cos 4x sin 3x - cos 2xsin x)/(sin 4x.sin x +cos 6x.cos x)= tan 2x

Prove that: (i) "sin"^(2)6x-"sin"^(2)4x="sin" 2x sin 10x (ii) cos^(2)2x-cos^(2)6x="sin" 4x sin 8x .

Prove that: (i) sin 3x+"sin" 2x-"sin" x = 4 sin x cos((x)/(2))cos((3x)/(2)) (ii) ("sin" 3x+"sin" x)"sin" x+(cos 3x-cos x)cos x=0.

Prove that : sin x+sin3x+sin5x+sin7x=4cos x cos2x sin4x