Home
Class 11
MATHS
Prove the following ("sin"x-"sin"3x)/("s...

Prove the following `("sin"x-"sin"3x)/("sin"^(2)x-cos3x)=2"sin"x`

Text Solution

Verified by Experts

The correct Answer is:
RHS
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.4)|7 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on chapter (3)|9 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.2)|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove the following: ("sin" 5x-2 sin 3x+"sin" x)/(cos 5x-cos x)="tan" x .

Prove that: ,,(sin x-sin3x)/(sin^(2)x-cos^(2)x)=2sin x

Prove that: ("sin"3x+"sin"x)"sin"x+(cos3x-cosx)cosx=0

Integrate the following: int{(5cos^(3)x+2sin^(3)x)/(2sin^(2)x*cos^(2)x)+sqrt(1+sin2x)+(1+2sin x)/(cos^(2)x)+(1-cos2x)/(1+cos2x)}dx

(sin2x-sin3x+sin4x)/(cos2x-co3x+cos4x)=

(sin x + sin 3x)/(cos x - cos 3x) = ?