Home
Class 11
MATHS
Prove the following cos4x=1-8"sin"^(2)xc...

Prove the following `cos4x=1-8"sin"^(2)xcos^(2)x`

Text Solution

Verified by Experts

The correct Answer is:
`=1-8 "sin"^(2)xcos^(2)x=RHS`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.4)|7 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on chapter (3)|9 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise NCERT(EXERCISE-3.2)|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

cos4x=1-8sin^(2)x cos^(2)x

cos4x=1-8sin^(2)x cos^(2)x

Prove that :cos4x=1-8sin^(2)x cos^(2)x

int(cos2x)/(sin^(2)xcos^(2)x)dx=

Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

int(cos2x)/(sin^(2)x.cos^(2)x)dx=