Home
Class 11
MATHS
Prove that costhetacos((theta)/(2))-c...

Prove that
`costhetacos((theta)/(2))-cos3thetacos((9theta)/(2))="sin"((7theta)/2)"sin"4theta`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Revision Exerise|31 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Check your unders"tan"ding|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on chapter (3)|9 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos 2theta"cos"(theta)/(2)-cos 3theta cos((9theta)/2)="sin" 5theta "sin"((5theta)/2) .

Prove that costhetacos""(theta)/(2)-cos3 thetacos""(9theta)/(2)=sin7thetasin8theta .

Prove that: cos2theta.costheta/2-cos3theta.cos(9theta)/(2)=sin5theta.sin(5theta)/(2)

Prove that: cos theta(cos theta)/(2)-cos3 theta(cos(9 theta))/(2)=sin7 theta s in8 theta

cos (2 theta) cos ((theta) / (2)) - cos (3 theta) cos ((9 theta) / (2)) = sin (5 theta) sin ((5 theta) / (2))

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that : (1+sin2 theta-cos 2theta)/(sin theta+cos theta)=2sin theta

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1