Home
Class 11
MATHS
Given, "sin" x = -(3)/(7) and x belongs ...

Given, `"sin" x = -(3)/(7)` and x belongs to the third quadrant, obtain the value of `"tan" x-sec x`
(ii) If `7 sin A = 24 cos A` and `0ltA lt(pi)/(2)` find`14 tan A - 25 cos A - 7 sec A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will break down each part of the question. ### Part (i): Given \( \sin x = -\frac{3}{7} \) and \( x \) belongs to the third quadrant, find \( \tan x - \sec x \). 1. **Identify the values**: - We know that \( \sin x = -\frac{3}{7} \). In the third quadrant, sine is negative. - The hypotenuse (r) is 7, and the opposite side (perpendicular) is -3 (since we consider lengths, we take it as 3). 2. **Find the adjacent side**: - Using the Pythagorean theorem: \[ r^2 = \text{opposite}^2 + \text{adjacent}^2 \] \[ 7^2 = 3^2 + \text{adjacent}^2 \] \[ 49 = 9 + \text{adjacent}^2 \] \[ \text{adjacent}^2 = 49 - 9 = 40 \] \[ \text{adjacent} = \sqrt{40} = 2\sqrt{10} \] 3. **Calculate \( \tan x \)**: - In the third quadrant, \( \tan x \) is positive: \[ \tan x = \frac{\text{opposite}}{\text{adjacent}} = \frac{-3}{2\sqrt{10}} = -\frac{3}{2\sqrt{10}} \text{ (but we take the positive value)} = \frac{3}{2\sqrt{10}} \] 4. **Calculate \( \sec x \)**: - \( \sec x = \frac{r}{\text{adjacent}} \): \[ \sec x = \frac{7}{2\sqrt{10}} \text{ (but since we are in the third quadrant, it is negative)} = -\frac{7}{2\sqrt{10}} \] 5. **Find \( \tan x - \sec x \)**: \[ \tan x - \sec x = \frac{3}{2\sqrt{10}} - \left(-\frac{7}{2\sqrt{10}}\right) = \frac{3}{2\sqrt{10}} + \frac{7}{2\sqrt{10}} = \frac{10}{2\sqrt{10}} = \frac{5}{\sqrt{10}} = \frac{5\sqrt{10}}{10} = \frac{\sqrt{10}}{2} \] ### Part (ii): Given \( 7 \sin A = 24 \cos A \) and \( 0 < A < \frac{\pi}{2} \), find \( 14 \tan A - 25 \cos A - 7 \sec A \). 1. **Express \( \tan A \)**: \[ \tan A = \frac{\sin A}{\cos A} \Rightarrow \sin A = \frac{24}{7} \cos A \] 2. **Use Pythagorean identity**: - From \( \sin^2 A + \cos^2 A = 1 \): \[ \left(\frac{24}{7} \cos A\right)^2 + \cos^2 A = 1 \] \[ \frac{576}{49} \cos^2 A + \cos^2 A = 1 \] \[ \left(\frac{576}{49} + 1\right) \cos^2 A = 1 \] \[ \left(\frac{576 + 49}{49}\right) \cos^2 A = 1 \] \[ \frac{625}{49} \cos^2 A = 1 \Rightarrow \cos^2 A = \frac{49}{625} \Rightarrow \cos A = \frac{7}{25} \] 3. **Find \( \sin A \)**: \[ \sin A = \frac{24}{7} \cos A = \frac{24}{7} \cdot \frac{7}{25} = \frac{24}{25} \] 4. **Calculate \( \tan A \)**: \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{24}{25}}{\frac{7}{25}} = \frac{24}{7} \] 5. **Calculate \( \sec A \)**: \[ \sec A = \frac{1}{\cos A} = \frac{25}{7} \] 6. **Substitute values into the expression**: \[ 14 \tan A - 25 \cos A - 7 \sec A = 14 \cdot \frac{24}{7} - 25 \cdot \frac{7}{25} - 7 \cdot \frac{25}{7} \] \[ = 48 - 7 - 25 = 16 \] ### Final Answers: - Part (i): \( \tan x - \sec x = \frac{\sqrt{10}}{2} \) - Part (ii): \( 14 \tan A - 25 \cos A - 7 \sec A = 16 \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Check your unders"tan"ding|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exerise|11 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If 7 sin A = 24 cos A then 14 tan A + 25 cos A - 7 sec A equals

If sec x+tan x=22/7, find the value of tan x/2

If sec x =- (13)/(12) and (pi)/(2) lt x lt pi , find the value of sin 2x

If sin x =(3)/(5) " and " 0 lt x lt (pi)/(2) find the value of tan (x)/(2)

If " sin " x =- (1)/(2) " and " pi lt x lt .(3pi)/(2) find the value of (i) " sin "2x , (ii) " cos " 2x (iii) " tan " 2x

If 7 sin ^(2) x + 3 cos ^(2) x =4, 0 lt x lt 90^(@), then what is the value of tan x ?

If tan x=(-3)/(4) " and" (3pi)/(2) lt x lt 2 pi find the value of "(i) " sin 2x , "(ii) " cos 2x , "(iii) " tan 2x

If tan A = (7)/(24) find the value of sin A cos A.

If sin 7x = cos 11x , 0^(@) lt x lt 90^(@) , then the value of tan 9x is:

MODERN PUBLICATION-TRIGONOMETRY-Revision Exerise
  1. Eliminate alpha between the equations : ("sin"^(2)alpha)/(cosalpha)...

    Text Solution

    |

  2. 3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x...

    Text Solution

    |

  3. Given, "sin" x = -(3)/(7) and x belongs to the third quadrant, obtain ...

    Text Solution

    |

  4. If sec A = x+(1)/(4x)prove that: sec A + tan A = 2x or (1)/(2x) ...

    Text Solution

    |

  5. If "sin" x + "sin"^(2) x = 1 show that: cos^(4)x + cos^(2)x = 1 ...

    Text Solution

    |

  6. If acostheta-b sintheta =c; prove that a sin theta + b costheta = pmsq...

    Text Solution

    |

  7. Prove that"sin"(pi)/(14)"sin"(3pi)/(14)"sin"(5pi)/(14)"sin"(7pi)/(14)=...

    Text Solution

    |

  8. Prove that: cos^2A+cos^2(A+pi/3)+cos^2(A-pi/3)=3/2

    Text Solution

    |

  9. If (s in^4theta)/a+(cos^4theta)/b=1/(a+b) , prove that (s in^8theta)/...

    Text Solution

    |

  10. If at a nalpha+bt a nbeta=(a+b)tan((alpha+beta)/2) , where alpha!=beta...

    Text Solution

    |

  11. If alphaa n dbeta are the solutions of acostheta+bs intheta=c , then s...

    Text Solution

    |

  12. If alpha and beta are the solution of the equation, a tantheta+bsecth...

    Text Solution

    |

  13. If tanbeta=(Q"sin"alpha)/(P+Qcosalpha) Prove that "tan"(alpha-beta)=...

    Text Solution

    |

  14. Prove that: cotthetacot2theta+cottheta2cot3theta+2=cottheta(cottheta-c...

    Text Solution

    |

  15. Prove that:(cos 2A cos 3A -cos 2A cos 7A + cos A cos 10A)/("sin" 4A si...

    Text Solution

    |

  16. If theta(1),theta(2),theta(3),".......",theta(n) are in AP whose commo...

    Text Solution

    |

  17. If A+B+C = pi prove that cos 4A + cos 4B + cos 4C = -1 + 4 cos 2A co...

    Text Solution

    |

  18. If A+B+C=pi, prove that : sin, (B+C)/(2) + sin, (C+A)/(2) + sin, (A+B)...

    Text Solution

    |

  19. If A + B + C = 180^(@) prove that: (i) "sin" (B+C-A) + "sin"(C+ A-B)...

    Text Solution

    |

  20. Prove that the triangle ABC is equilateral if cotA+cotB+cotC=sqrt3

    Text Solution

    |