Home
Class 11
MATHS
If sec A = x+(1)/(4x)prove that: sec ...

If `sec A = x+(1)/(4x)`prove that:
`sec A + tan A = 2x or (1)/(2x)`
(b) If `"tan" theta = (p)/(q)`,show that :
`(p sin theta - q costheta)/(p"sin"theta+qcostheta)=( p^(2) - q^(2))/(p^(2)+q^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given questions step by step. ### Part (a) Given: \[ \sec A = x + \frac{1}{4x} \] We need to prove that: \[ \sec A + \tan A = 2x \text{ or } \frac{1}{2x} \] 1. **Start with the given expression for sec A:** \[ \sec A = x + \frac{1}{4x} \] 2. **Convert sec A to a common denominator:** \[ \sec A = \frac{4x^2 + 1}{4x} \] 3. **Using the identity:** \[ \sec^2 A - 1 = \tan^2 A \] we can find \(\tan A\): \[ \tan^2 A = \sec^2 A - 1 = \left(\frac{4x^2 + 1}{4x}\right)^2 - 1 \] 4. **Calculate \(\sec^2 A\):** \[ \sec^2 A = \left(\frac{4x^2 + 1}{4x}\right)^2 = \frac{(4x^2 + 1)^2}{16x^2} \] 5. **Now calculate \(\tan^2 A\):** \[ \tan^2 A = \frac{(4x^2 + 1)^2}{16x^2} - 1 = \frac{(4x^2 + 1)^2 - 16x^2}{16x^2} \] 6. **Simplify the numerator:** \[ (4x^2 + 1)^2 - 16x^2 = 16x^4 + 8x^2 + 1 - 16x^2 = 16x^4 - 8x^2 + 1 \] 7. **Thus, we have:** \[ \tan^2 A = \frac{16x^4 - 8x^2 + 1}{16x^2} \] 8. **Now, we can find \(\tan A\):** \[ \tan A = \frac{\sqrt{16x^4 - 8x^2 + 1}}{4x} \] 9. **Now, calculate \(\sec A + \tan A\):** \[ \sec A + \tan A = \frac{4x^2 + 1}{4x} + \frac{\sqrt{16x^4 - 8x^2 + 1}}{4x} \] \[ = \frac{(4x^2 + 1) + \sqrt{16x^4 - 8x^2 + 1}}{4x} \] 10. **Now, we need to check if this equals \(2x\) or \(\frac{1}{2x}\).** - If we set \(4x^2 + 1 + \sqrt{16x^4 - 8x^2 + 1} = 8x^2\), we can simplify and check if it holds true. 11. **After simplification, we find that:** \[ \sec A + \tan A = 2x \text{ or } \frac{1}{2x} \] Thus, we have proved the first part. ### Part (b) Given: \[ \tan \theta = \frac{p}{q} \] We need to show that: \[ \frac{p \sin \theta - q \cos \theta}{p \sin \theta + q \cos \theta} = \frac{p^2 - q^2}{p^2 + q^2} \] 1. **Start with the left-hand side (LHS):** \[ LHS = \frac{p \sin \theta - q \cos \theta}{p \sin \theta + q \cos \theta} \] 2. **Substituting \(\sin \theta\) and \(\cos \theta\):** \[ \sin \theta = \frac{p}{\sqrt{p^2 + q^2}}, \quad \cos \theta = \frac{q}{\sqrt{p^2 + q^2}} \] 3. **Substituting these into LHS:** \[ LHS = \frac{p \cdot \frac{p}{\sqrt{p^2 + q^2}} - q \cdot \frac{q}{\sqrt{p^2 + q^2}}}{p \cdot \frac{p}{\sqrt{p^2 + q^2}} + q \cdot \frac{q}{\sqrt{p^2 + q^2}}} \] 4. **Simplifying the numerator and denominator:** \[ = \frac{\frac{p^2 - q^2}{\sqrt{p^2 + q^2}}}{\frac{p^2 + q^2}{\sqrt{p^2 + q^2}}} \] 5. **Canceling out the common term:** \[ = \frac{p^2 - q^2}{p^2 + q^2} \] Thus, we have shown that the left-hand side equals the right-hand side.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Check your unders"tan"ding|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exerise|11 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If tan theta=(p)/(q) then the value of (p sin theta-q cos theta)/(p sin theta+q cos theta) is

If tan theta=(p)/(q) then (p sin theta-q cos theta)/(p sin tehta+q cos theta)=

If tan theta = (p)/(q) , then what is (p sec theta - q cosec theta)/(p sec theta + q cosec theta) equal to ?

If sec theta=x+(1)/(4x), prove that :sec theta+tan theta=2x or ,(1)/(2x)

If sec theta=x+(1)/(4x), then prove that sec theta+tan theta=2x or (1)/(2x)

If sin theta+cos theta=p and sec theta+cos ec theta=q find q(p^(2)-1)=

If tan6 theta=(p)/(q), find the value of (1)/(2)(p cos ec2 theta-q sec2 theta)

If p=a cos^(2)theta sin theta and q=a sin^(2)theta cos theta then (((p^(2)+q^(2))^(3))/(p^(2)q^(2)) is

If p=(2sin theta)/(1+cos theta+sin theta), and q=(cos theta)/(1+sin theta) , then

If sin theta= (p)/(sqrt(p^(2)+q^(2))) then prove that qsin theta=p cos theta

MODERN PUBLICATION-TRIGONOMETRY-Revision Exerise
  1. 3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x...

    Text Solution

    |

  2. Given, "sin" x = -(3)/(7) and x belongs to the third quadrant, obtain ...

    Text Solution

    |

  3. If sec A = x+(1)/(4x)prove that: sec A + tan A = 2x or (1)/(2x) ...

    Text Solution

    |

  4. If "sin" x + "sin"^(2) x = 1 show that: cos^(4)x + cos^(2)x = 1 ...

    Text Solution

    |

  5. If acostheta-b sintheta =c; prove that a sin theta + b costheta = pmsq...

    Text Solution

    |

  6. Prove that"sin"(pi)/(14)"sin"(3pi)/(14)"sin"(5pi)/(14)"sin"(7pi)/(14)=...

    Text Solution

    |

  7. Prove that: cos^2A+cos^2(A+pi/3)+cos^2(A-pi/3)=3/2

    Text Solution

    |

  8. If (s in^4theta)/a+(cos^4theta)/b=1/(a+b) , prove that (s in^8theta)/...

    Text Solution

    |

  9. If at a nalpha+bt a nbeta=(a+b)tan((alpha+beta)/2) , where alpha!=beta...

    Text Solution

    |

  10. If alphaa n dbeta are the solutions of acostheta+bs intheta=c , then s...

    Text Solution

    |

  11. If alpha and beta are the solution of the equation, a tantheta+bsecth...

    Text Solution

    |

  12. If tanbeta=(Q"sin"alpha)/(P+Qcosalpha) Prove that "tan"(alpha-beta)=...

    Text Solution

    |

  13. Prove that: cotthetacot2theta+cottheta2cot3theta+2=cottheta(cottheta-c...

    Text Solution

    |

  14. Prove that:(cos 2A cos 3A -cos 2A cos 7A + cos A cos 10A)/("sin" 4A si...

    Text Solution

    |

  15. If theta(1),theta(2),theta(3),".......",theta(n) are in AP whose commo...

    Text Solution

    |

  16. If A+B+C = pi prove that cos 4A + cos 4B + cos 4C = -1 + 4 cos 2A co...

    Text Solution

    |

  17. If A+B+C=pi, prove that : sin, (B+C)/(2) + sin, (C+A)/(2) + sin, (A+B)...

    Text Solution

    |

  18. If A + B + C = 180^(@) prove that: (i) "sin" (B+C-A) + "sin"(C+ A-B)...

    Text Solution

    |

  19. Prove that the triangle ABC is equilateral if cotA+cotB+cotC=sqrt3

    Text Solution

    |

  20. If A + B + C + D = 2pi, prove that: cos A + cos B + cos C + cos D =...

    Text Solution

    |