Home
Class 11
MATHS
Find the solutions x in [0,2pi] of:"sin"...

 Find the solutions `x in [0,2pi]` of:`"sin" 2x – 12 ("sin" x - cos x) + 12 = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin 2x - 12(\sin x - \cos x) + 12 = 0 \) for \( x \) in the interval \( [0, 2\pi] \), we will follow these steps: ### Step 1: Rewrite the equation We start by rewriting the equation using the double angle identity for sine: \[ \sin 2x = 2 \sin x \cos x \] Substituting this into the equation gives: \[ 2 \sin x \cos x - 12(\sin x - \cos x) + 12 = 0 \] ### Step 2: Expand and rearrange Expanding the equation: \[ 2 \sin x \cos x - 12 \sin x + 12 \cos x + 12 = 0 \] Rearranging it, we have: \[ 2 \sin x \cos x - 12 \sin x + 12 \cos x + 12 = 0 \] ### Step 3: Substitute \( t = \sin x - \cos x \) Let \( t = \sin x - \cos x \). Then we can express \( \sin x \) and \( \cos x \) in terms of \( t \): \[ \sin x = t + \cos x \] Squaring both sides gives: \[ \sin^2 x = (t + \cos x)^2 = t^2 + 2t \cos x + \cos^2 x \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ 1 = t^2 + 2t \cos x + \cos^2 x \] This leads to: \[ 1 - t^2 = 2t \cos x \] ### Step 4: Substitute back into the equation Substituting \( \sin 2x = 2 \sin x \cos x \) into the equation gives: \[ 1 - t^2 - 12t + 12 = 0 \] This simplifies to: \[ -t^2 - 12t + 13 = 0 \] Multiplying through by -1: \[ t^2 + 12t - 13 = 0 \] ### Step 5: Factor the quadratic We can factor the quadratic: \[ (t + 13)(t - 1) = 0 \] Thus, the solutions for \( t \) are: \[ t = -13 \quad \text{or} \quad t = 1 \] ### Step 6: Analyze the solutions 1. For \( t = -13 \): \[ \sin x - \cos x = -13 \] This is impossible since both \( \sin x \) and \( \cos x \) are bounded between -1 and 1. 2. For \( t = 1 \): \[ \sin x - \cos x = 1 \] Rearranging gives: \[ \sin x = 1 + \cos x \] Since \( \sin x \) cannot exceed 1, we analyze this case further. ### Step 7: Solve \( \sin x = 1 + \cos x \) This leads to: \[ \sin x - \cos x = 1 \] Multiplying both sides by \( \sqrt{2} \): \[ \frac{1}{\sqrt{2}} \sin x - \frac{1}{\sqrt{2}} \cos x = \frac{1}{\sqrt{2}} \] This can be rewritten using the sine subtraction formula: \[ \sin\left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, we have: \[ x - \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{4} \] ### Step 8: Find specific solutions for \( x \) 1. For \( n = 0 \): \[ x - \frac{\pi}{4} = \frac{\pi}{4} \implies x = \frac{\pi}{2} \] 2. For \( n = 1 \): \[ x - \frac{\pi}{4} = \pi - \frac{\pi}{4} \implies x = \frac{5\pi}{4} \] ### Step 9: Final solutions The solutions for \( x \) in the interval \( [0, 2\pi] \) are: \[ x = \frac{\pi}{2}, \frac{5\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Check your unders"tan"ding|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exerise|11 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

The number of solution of the equation 2 "sin"^(3) x + 2 "cos"^(3) x - 3 "sin" 2x + 2 = 0 "in" [0, 4pi] , is

Find the general solution: sin2x+cos x=0

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

Find the number of solutions of the equation 2 sin^(2) x + sin^(2) 2x = 2 , sin 2x + cos 2x = tan x in [0, 4 pi] satisfying the condition 2 cos^(2) x + sin x le 2 .

Number of solution of the equation sin 2x + cos 2x + sin x + cos x + 1 = 0 In the interval, (0, pi//2) is

The number of solutions of the equation "sin" x = [1+"sin" x] + [1 -"cos" x] "in" [0, 2pi] is

Find the solution set for , 4 sin^(2)x -8 sin x +3 le 0 where x in [0,2pi]

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is

MODERN PUBLICATION-TRIGONOMETRY-Revision Exerise
  1. Prove that: cos^2A+cos^2(A+pi/3)+cos^2(A-pi/3)=3/2

    Text Solution

    |

  2. If (s in^4theta)/a+(cos^4theta)/b=1/(a+b) , prove that (s in^8theta)/...

    Text Solution

    |

  3. If at a nalpha+bt a nbeta=(a+b)tan((alpha+beta)/2) , where alpha!=beta...

    Text Solution

    |

  4. If alphaa n dbeta are the solutions of acostheta+bs intheta=c , then s...

    Text Solution

    |

  5. If alpha and beta are the solution of the equation, a tantheta+bsecth...

    Text Solution

    |

  6. If tanbeta=(Q"sin"alpha)/(P+Qcosalpha) Prove that "tan"(alpha-beta)=...

    Text Solution

    |

  7. Prove that: cotthetacot2theta+cottheta2cot3theta+2=cottheta(cottheta-c...

    Text Solution

    |

  8. Prove that:(cos 2A cos 3A -cos 2A cos 7A + cos A cos 10A)/("sin" 4A si...

    Text Solution

    |

  9. If theta(1),theta(2),theta(3),".......",theta(n) are in AP whose commo...

    Text Solution

    |

  10. If A+B+C = pi prove that cos 4A + cos 4B + cos 4C = -1 + 4 cos 2A co...

    Text Solution

    |

  11. If A+B+C=pi, prove that : sin, (B+C)/(2) + sin, (C+A)/(2) + sin, (A+B)...

    Text Solution

    |

  12. If A + B + C = 180^(@) prove that: (i) "sin" (B+C-A) + "sin"(C+ A-B)...

    Text Solution

    |

  13. Prove that the triangle ABC is equilateral if cotA+cotB+cotC=sqrt3

    Text Solution

    |

  14. If A + B + C + D = 2pi, prove that: cos A + cos B + cos C + cos D =...

    Text Solution

    |

  15. If x+y+z=x y z prove that (2x)/(1-x^2)+(2y)/(1-y^2)+(2z)/(1-z^2)=(2x)/...

    Text Solution

    |

  16. If x y+y z+x z=1,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y...

    Text Solution

    |

  17. Find the solutions x in [0,2pi] of:"sin" 2x – 12 ("sin" x - cos x) + 1...

    Text Solution

    |

  18. Solve : (i) cos 3theta + 8 cos^(3) theta = 0 (ii) "tan" (pi cot x) ...

    Text Solution

    |

  19. Prove that the values of the function("sin"xcos3x)/(cosx"sin"3x)do not...

    Text Solution

    |

  20. If p(1),p(2),p(3) are the altitues of a triangle from the vertieces A,...

    Text Solution

    |