Home
Class 11
MATHS
Prove that sin 10^(@) " sin " 50^(@) "...

Prove that sin `10^(@) " sin " 50^(@) " sin " 60^(@) " sin " 70^(@) = .(sqrt(3))/(16)`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that sin10^(@) sin 30^(@) sin 50^(@) sin 70^(@)=1/16

The value of sin 50^(@) - sin 70^(@) + sin 10^(@) is

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .

Prove that (i) sin 70^(@) cos 10^(@) -cos 70^(@) sin 10^(@) =(sqrt(3))/(2) (ii) cos 50^(@) cos 10^(@) -sin 50^(@) sin 10^(@) =(1)/(2) (ii) cos 80^(@) cos 20^(@) + sin 80^(@) sin 20^(@) =(1)/(2) (iv) sin 36^(@) cos 9^(@) + cos 36^(@) sin 9^(@) =(1)/(sqrt(3))

sin 20^(@) sin 40^(@) sin 60^(@) sin 80^(@) =(3)/(16)

Prove : sin 10^(@)sin50^(@)sin70^(@) = 1//8 .

sin50 ^ (@) - sin70 ^ (@) + sin10 ^ (@) = 0