Home
Class 11
MATHS
If Pm stands for ^m Pm , then prove that...

If `P_m` stands for `^m P_m` , then prove that: `1+1. P_1+2. P_2+3. P_3++ndotP_n=(n+1)!`

Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Frequently Asked Questions|19 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If P_(m) stands for mP_(m), then prove that: 1+1.P_(1)+2.P_(2)+3.P_(3)+...+n.P_(n)=(n+1)!

Prove that: P(1,1)+2.P(2,2)+3.P(3,3)++ndot P(n,n)=P(n+1,n+1)-1

Let P_(m) stand for nP_(m). Then the expression 1.P_(1)+2.P_(2)+3.P_(3)+...+n.P_(n)=:

Let P_(m) stand for mP_(m) then 1+P_(1)+2P_(2)+3P_(3)+.......+nP_(n) is equal to

prove that 1P_(1)+2.2P_(2)+3.3P_(3)+.......+n.nP_(n)=(n+1)P_(n+1)-1

Prove that: 1.P (1,1)+2.P(2,2)+3.P(3,3)+...+n.P(n,n)=P(n+1,n+1)-1