Home
Class 11
MATHS
Verify that 2 ""^(7)C(4)=""^(8)C(4)....

Verify that `2 ""^(7)C_(4)=""^(8)C_(4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To verify that \( 2 \times \binom{7}{4} = \binom{8}{4} \), we will compute both sides using the formula for combinations. ### Step-by-Step Solution: 1. **Understanding the Combination Formula**: The formula for combinations is given by: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] 2. **Calculate \( \binom{7}{4} \)**: Using the formula, we can calculate \( \binom{7}{4} \): \[ \binom{7}{4} = \frac{7!}{4!(7-4)!} = \frac{7!}{4! \cdot 3!} \] 3. **Expanding the Factorials**: We can expand \( 7! \) as follows: \[ 7! = 7 \times 6 \times 5 \times 4! \] Thus, we have: \[ \binom{7}{4} = \frac{7 \times 6 \times 5 \times 4!}{4! \cdot 3!} \] 4. **Canceling \( 4! \)**: The \( 4! \) in the numerator and denominator cancels out: \[ \binom{7}{4} = \frac{7 \times 6 \times 5}{3!} \] 5. **Calculating \( 3! \)**: We know that \( 3! = 6 \), so: \[ \binom{7}{4} = \frac{7 \times 6 \times 5}{6} = 7 \times 5 = 35 \] 6. **Calculating \( 2 \times \binom{7}{4} \)**: Now, we calculate: \[ 2 \times \binom{7}{4} = 2 \times 35 = 70 \] 7. **Calculate \( \binom{8}{4} \)**: Now, we compute \( \binom{8}{4} \): \[ \binom{8}{4} = \frac{8!}{4!(8-4)!} = \frac{8!}{4! \cdot 4!} \] 8. **Expanding \( 8! \)**: We can expand \( 8! \) as follows: \[ 8! = 8 \times 7 \times 6 \times 5 \times 4! \] Thus, we have: \[ \binom{8}{4} = \frac{8 \times 7 \times 6 \times 5 \times 4!}{4! \cdot 4!} \] 9. **Canceling \( 4! \)**: The \( 4! \) in the numerator and denominator cancels out: \[ \binom{8}{4} = \frac{8 \times 7 \times 6 \times 5}{4!} \] 10. **Calculating \( 4! \)**: Again, \( 4! = 24 \), so: \[ \binom{8}{4} = \frac{8 \times 7 \times 6 \times 5}{24} \] 11. **Calculating the Numerator**: First, calculate \( 8 \times 7 \times 6 \times 5 \): \[ 8 \times 7 = 56 \] \[ 56 \times 6 = 336 \] \[ 336 \times 5 = 1680 \] 12. **Final Calculation**: Now divide by \( 24 \): \[ \binom{8}{4} = \frac{1680}{24} = 70 \] 13. **Conclusion**: Since both calculations yield the same result: \[ 2 \times \binom{7}{4} = 70 \quad \text{and} \quad \binom{8}{4} = 70 \] We have verified that \( 2 \times \binom{7}{4} = \binom{8}{4} \).
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Frequently Asked Questions|19 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Verify that if 2xx ""^(7)C_(4)= ""^(17)C_(8) .

Verify that ""^(9)C_(5)+""^(9)C_(4)=""^(10)C_(5)

Verify that: (i) .^(15)C_(8)+.^(15)C_(9)-.^(15)C_(7)=0 " " (ii) .^(10)C_(4)+.^(10)C_(3)=.^(11)C_(4)

What is the value of ""^(8)C_(0)-""^(8)C_(1)+""^(8)C_(2)-""^(8)C_(3)+""^(8)C_(4)-""^(8)C_(5)+""^(8)C_(6)-""^(8)C_(7)+""^(8)C_(8)

Prove that .^(7)C_(2)+^(7)C_(3)=^(8)C_(3)

8C_(4)+^(8)C_(3)=^(9)C_(4)

Find the value of .^(7)C_(4)-.^(6)C_(4)-.^(5)C_(3)-.^(4)C_(2) .

Prove that: 2xx^7C_4=^8C_4