Home
Class 11
MATHS
If ""^(n)C(7)=""^(n)C(5), find ""^(n)C(4...

If `""^(n)C_(7)=""^(n)C_(5)`, find `""^(n)C_(4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \binom{n}{7} = \binom{n}{5} \) and find \( \binom{n}{4} \), we will follow these steps: ### Step 1: Set up the equation using the combination formula The combination formula is given by: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Using this formula, we can express \( \binom{n}{7} \) and \( \binom{n}{5} \): \[ \binom{n}{7} = \frac{n!}{7!(n-7)!} \] \[ \binom{n}{5} = \frac{n!}{5!(n-5)!} \] ### Step 2: Set the two combinations equal to each other Since we know \( \binom{n}{7} = \binom{n}{5} \), we can set the two expressions equal: \[ \frac{n!}{7!(n-7)!} = \frac{n!}{5!(n-5)!} \] ### Step 3: Cancel \( n! \) from both sides Assuming \( n! \neq 0 \), we can cancel \( n! \) from both sides: \[ \frac{1}{7!(n-7)!} = \frac{1}{5!(n-5)!} \] ### Step 4: Cross-multiply to eliminate the fractions Cross-multiplying gives us: \[ 5!(n-5)! = 7!(n-7)! \] ### Step 5: Substitute \( 7! \) in terms of \( 5! \) We know that \( 7! = 7 \times 6 \times 5! \), so we can substitute this into the equation: \[ 5!(n-5)! = 7 \times 6 \times 5!(n-7)! \] ### Step 6: Cancel \( 5! \) from both sides Assuming \( 5! \neq 0 \), we can cancel \( 5! \): \[ (n-5)! = 42(n-7)! \] ### Step 7: Express \( (n-5)! \) in terms of \( (n-7)! \) We can express \( (n-5)! \) as: \[ (n-5)(n-6)(n-7)! = 42(n-7)! \] Now, we can cancel \( (n-7)! \) from both sides: \[ (n-5)(n-6) = 42 \] ### Step 8: Expand and rearrange the equation Expanding gives us: \[ n^2 - 11n + 30 - 42 = 0 \] which simplifies to: \[ n^2 - 11n - 12 = 0 \] ### Step 9: Factor the quadratic equation Now we can factor the quadratic: \[ (n - 12)(n + 1) = 0 \] Thus, \( n = 12 \) or \( n = -1 \). Since \( n \) must be a non-negative integer, we take \( n = 12 \). ### Step 10: Calculate \( \binom{n}{4} \) Now we need to find \( \binom{12}{4} \): \[ \binom{12}{4} = \frac{12!}{4!(12-4)!} = \frac{12!}{4! \cdot 8!} \] Calculating this gives: \[ \binom{12}{4} = \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} = \frac{11880}{24} = 495 \] ### Final Answer Thus, \( \binom{n}{4} = 495 \). ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Frequently Asked Questions|19 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

(i) If ""^(n)C_(8)= ""^(n)C_(2) , find ""^(n)C_(2) . (ii) If ""^(n)C_(10)= ""^(n)C_(12) , determine n and hence ""^(n)C_(5) . (iii) If ""^(n)C_(9)= ""^(n)C_(8) , find ""^(n)C_(17) .

If ""^(n)C_(10)= ""^(n)C_(9) , find ""^(n)C_(19) .

If ""^(n)C_(7)= ""^(n)C_(5) , then ""C_(4)= ………….

If .^(n)C_(9)=.^(n)C_(7) , find n.