Home
Class 11
MATHS
Prove that : ""^(2)C(1)+ ""^(3)C(1)+...

Prove that :
`""^(2)C_(1)+ ""^(3)C_(1)+""^(4)C_(1)=""^(3)C_(2)+""^(4)C_(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \binom{2}{1} + \binom{3}{1} + \binom{4}{1} = \binom{3}{2} + \binom{4}{2} \), we will evaluate both sides of the equation. ### Step 1: Evaluate the Left Hand Side (LHS) The left-hand side is given by: \[ \binom{2}{1} + \binom{3}{1} + \binom{4}{1} \] Using the property of combinations, we know that \( \binom{n}{1} = n \). Thus, we can calculate each term: \[ \binom{2}{1} = 2, \quad \binom{3}{1} = 3, \quad \binom{4}{1} = 4 \] Now, substituting these values into the LHS: \[ LHS = 2 + 3 + 4 = 9 \] ### Step 2: Evaluate the Right Hand Side (RHS) The right-hand side is given by: \[ \binom{3}{2} + \binom{4}{2} \] Again, using the formula for combinations, we can calculate each term: \[ \binom{3}{2} = \frac{3!}{2!(3-2)!} = \frac{3!}{2! \cdot 1!} = \frac{3 \times 2 \times 1}{2 \times 1 \times 1} = 3 \] \[ \binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4!}{2! \cdot 2!} = \frac{4 \times 3 \times 2 \times 1}{(2 \times 1)(2 \times 1)} = \frac{12}{4} = 6 \] Now, substituting these values into the RHS: \[ RHS = 3 + 6 = 9 \] ### Step 3: Compare LHS and RHS Now we compare both sides: \[ LHS = 9 \quad \text{and} \quad RHS = 9 \] Since both sides are equal, we have: \[ \binom{2}{1} + \binom{3}{1} + \binom{4}{1} = \binom{3}{2} + \binom{4}{2} \] Thus, we have proved the statement.
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Frequently Asked Questions|19 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Prove that 1+""^(3)C_(1)+ ""^(4)C_(2)= ""^(5)C_(3) .

Is it Ture or False 1+""^(3)C_(1)+""^(4)C_(2)=""^(5)C_(3) .

Prove that: .^(2)C_(2)+^(3)C_(2)+^(4)C_(2)+…..+^(n+1)C_(2)=1/6n(n+1)(n+2)

The sum of the series ""^(3)C_(0)- ""^(4)C_(1) . (1)/(2) + ""^(5)C_(2)((1)/(2))^(2) - ""^(6)C_(3)((1)/(2))^(3) + ... to infty , is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " + 3^(2) *C_(3) + …+ n^(2) *C_(n) 1^(2)*C_(1) + 2^(2) *C_(2) = n(n+1)* 2^(n-2) .

Prove that C_(0)-2^(2)C_(1)+3^(2)C_(2)-4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)xx C_(n)=0 where C_(r)=^(n)C_(r)

Prove that C_(1)^(2)-2*C_(2)^(2)+3*C_(3)^(2)-…-2n*C_(2n)^(2)=(-1)^(n)n*C_(n)