Home
Class 11
MATHS
Find 'n', if ""^(2n)C(1), ""^(2n)C(2) ...

Find 'n', if `""^(2n)C_(1), ""^(2n)C_(2)` and `""^(2n)C_(3)` are in A.P.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( n \) such that \( \binom{2n}{1}, \binom{2n}{2}, \binom{2n}{3} \) are in Arithmetic Progression (A.P.), we can follow these steps: ### Step 1: Set up the condition for A.P. For three numbers \( a, b, c \) to be in A.P., the condition is: \[ 2b = a + c \] In our case, we can set: - \( a = \binom{2n}{1} \) - \( b = \binom{2n}{2} \) - \( c = \binom{2n}{3} \) Thus, we have: \[ 2 \binom{2n}{2} = \binom{2n}{1} + \binom{2n}{3} \] ### Step 2: Substitute the binomial coefficients Using the formula for binomial coefficients: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] we can write: - \( \binom{2n}{1} = \frac{2n!}{1!(2n-1)!} = 2n \) - \( \binom{2n}{2} = \frac{2n!}{2!(2n-2)!} = \frac{2n(2n-1)}{2} = n(2n-1) \) - \( \binom{2n}{3} = \frac{2n!}{3!(2n-3)!} = \frac{2n(2n-1)(2n-2)}{3!} = \frac{2n(2n-1)(2n-2)}{6} \) ### Step 3: Substitute into the A.P. condition Substituting these into the A.P. condition gives: \[ 2(n(2n-1)) = 2n + \frac{2n(2n-1)(2n-2)}{6} \] ### Step 4: Simplify the equation Multiply through by 6 to eliminate the fraction: \[ 12n(2n-1) = 12n + 2n(2n-1)(2n-2) \] Expanding the right-hand side: \[ 12n(2n-1) = 12n + 2n(2n-1)(2n-2) \] This simplifies to: \[ 12n(2n-1) = 12n + 2n(4n^2 - 6n + 2) \] ### Step 5: Rearranging and simplifying Rearranging gives: \[ 12n(2n-1) - 12n = 2n(4n^2 - 6n + 2) \] Factoring out \( 2n \): \[ 2n(6(2n-1) - 6) = 2n(4n^2 - 6n + 2) \] Now, we can cancel \( 2n \) (assuming \( n \neq 0 \)): \[ 6(2n-1) - 6 = 4n^2 - 6n + 2 \] ### Step 6: Solve the resulting equation This simplifies to: \[ 12n - 6 - 6 = 4n^2 - 6n + 2 \] \[ 12n - 12 = 4n^2 - 6n + 2 \] Rearranging gives: \[ 4n^2 - 18n + 14 = 0 \] ### Step 7: Use the quadratic formula Using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 4, b = -18, c = 14 \): \[ n = \frac{18 \pm \sqrt{(-18)^2 - 4 \cdot 4 \cdot 14}}{2 \cdot 4} \] Calculating the discriminant: \[ n = \frac{18 \pm \sqrt{324 - 224}}{8} \] \[ n = \frac{18 \pm \sqrt{100}}{8} \] \[ n = \frac{18 \pm 10}{8} \] Calculating the two possible values for \( n \): 1. \( n = \frac{28}{8} = 3.5 \) 2. \( n = \frac{8}{8} = 1 \) ### Final Answer Thus, the possible values of \( n \) are \( n = 1 \) or \( n = 3.5 \).
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Frequently Asked Questions|19 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P., find n.

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

(i) If ""^(2n)C_(3) : ""^(n)C_(3)= 11 : 1 , find n. (ii) If ""^(2n)C_(3) : ""^(n)C_(2) = 12 : 1 , find n.

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

If .^(2n)C_(3):.^(n)C_(3)=12:1 , find n.

If .^(n)C_(4),.^(n)C_(5), .^(n)C_(6) are in A.P., then find the value of n.

The value of sum (""^(n) C_(1) )^(2)+ (""^(n) C_(2) )^(2) + (""^(n) C_(3))^(2) + …+ (""^(n) C_(n) )^(2) is