Home
Class 11
MATHS
There are 10 persons named P1, P2, P3 .....

There are 10 persons named `P_1, P_2, P_3 ..., P_10`. Out of 10 persons, 5 persons are to be arranged in a line such that is each arrangement `P_1` must occur whereas `P_4` and `P_5` do not occur. Find the number of such possible arrangements.

Text Solution

Verified by Experts

The correct Answer is:
4200 ways.
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (a) Short Answer Type Questions|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Short Answer Type Questions|16 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Frequently Asked Questions|19 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of p: p+5=10

If the mean of 2, 4, p, 8, and 10 is p, then find the value of p?

4d, 5p, 5f and 6p orbitals are arranged in the order of decreasing energy. The correct option is :

If the distance between the points (4,p) and (1,0) is 5 , then find the value of p.

A person sells an article for Rs 550, gaining 1/(10) of its C.P. Find gain percent.