Home
Class 11
MATHS
Evaluate (i) ""^(61)C(57)- ""^(60)...

Evaluate
(i) `""^(61)C_(57)- ""^(60)C_(56)`
(ii) `""^(31)C_(26)- ""^(30)C_(26)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will evaluate each part separately. ### Part (i): Evaluate \( \binom{61}{57} - \binom{60}{56} \) 1. **Use the identity**: We know that \( \binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1} \). Here, we can set \( n = 60 \) and \( r = 56 \). \[ \binom{60}{56} + \binom{60}{57} = \binom{61}{57} \] 2. **Rearranging the equation**: From the above identity, we can express \( \binom{61}{57} \): \[ \binom{61}{57} = \binom{60}{56} + \binom{60}{57} \] 3. **Substituting back into the original expression**: \[ \binom{61}{57} - \binom{60}{56} = \binom{60}{57} \] 4. **Calculating \( \binom{60}{57} \)**: \[ \binom{60}{57} = \binom{60}{3} = \frac{60!}{3!(60-3)!} = \frac{60!}{3! \cdot 57!} \] \[ = \frac{60 \times 59 \times 58}{3 \times 2 \times 1} = \frac{60 \times 59 \times 58}{6} \] 5. **Calculating the product**: \[ 60 \times 59 = 3540 \] \[ 3540 \times 58 = 205320 \] \[ \frac{205320}{6} = 34220 \] Thus, the answer for part (i) is: \[ \boxed{34220} \] ### Part (ii): Evaluate \( \binom{31}{26} - \binom{30}{26} \) 1. **Use the identity**: We cannot directly apply the previous identity since \( r \) is the same in both terms. Instead, we will calculate each term separately. 2. **Calculating \( \binom{31}{26} \)**: \[ \binom{31}{26} = \binom{31}{5} = \frac{31!}{5!(31-5)!} = \frac{31!}{5! \cdot 26!} \] \[ = \frac{31 \times 30 \times 29 \times 28 \times 27}{5 \times 4 \times 3 \times 2 \times 1} \] 3. **Calculating \( \binom{30}{26} \)**: \[ \binom{30}{26} = \binom{30}{4} = \frac{30!}{4!(30-4)!} = \frac{30!}{4! \cdot 26!} \] \[ = \frac{30 \times 29 \times 28 \times 27}{4 \times 3 \times 2 \times 1} \] 4. **Finding the common factor**: Both terms share \( 26! \) in the denominator. Thus, we can factor it out: \[ \binom{31}{26} - \binom{30}{26} = \frac{31 \times 30 \times 29 \times 28 \times 27}{5!} - \frac{30 \times 29 \times 28 \times 27}{4!} \] 5. **Factoring out common terms**: \[ = \frac{30 \times 29 \times 28 \times 27}{4!} \left( \frac{31}{5} - 1 \right) \] \[ = \frac{30 \times 29 \times 28 \times 27}{24} \left( \frac{31 - 5}{5} \right) = \frac{30 \times 29 \times 28 \times 27}{24} \cdot \frac{26}{5} \] 6. **Calculating the product**: First calculate \( 30 \times 29 \times 28 \times 27 \): \[ 30 \times 29 = 870 \] \[ 870 \times 28 = 24360 \] \[ 24360 \times 27 = 657720 \] Now divide by \( 24 \): \[ \frac{657720}{24} = 27405 \] Finally multiply by \( \frac{26}{5} \): \[ 27405 \times \frac{26}{5} = 142626 \] Thus, the answer for part (ii) is: \[ \boxed{142626} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (i) Short Answer Type Questions|14 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (i) Long Answer Type Questions - I|8 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (e ) Short Answer Type Questions|8 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

61C_(57)-^(60)C_(56)

Evaluate (i) ""^(10)C_(4)+""^(10)C_(5) (ii) ""^(13)C_(6)+ ""^(13)C_(5) (iii) ""^(19)C_(17)+ ""^(19)C_(18) .

Evaluate: (i) .^(10)C_(3) " " (ii) .^(11)C_(8) (iii) .^(50)C_(48) " " (iv) .^(63)C_(63)

Evaluate: (i) ^(10)C_3 (ii) ^(100)C_(98) (iii) ^(60)C_(60)

Evaluate the following : (i) ""^(7)C_(5) (ii) ""^(105)C_(102)

Evaluate .^61C_57-^60C_56

Evaluate .^31C_26-^30C_26

(i) .^(n)C_(7)=.^(n)C_(5) , find n. (ii) If.^(n)C_(14)=.^(n)C_(16) , find .^(n)C_(28) .

""^(26)C_(0)+""^(26)C_(1)+""^(26)C_(2)+…..+""^(26)C_(13) is equal to :