Home
Class 11
MATHS
(i) If ""^(2n)C(3) : ""^(n)C(3)= 11 : ...

(i) If `""^(2n)C_(3) : ""^(n)C_(3)= 11 : 1`, find n.
(ii) If `""^(2n)C_(3) : ""^(n)C_(2) = 12 : 1`, find n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will use the formula for combinations, which is given by: \[ ^nC_r = \frac{n!}{r!(n-r)!} \] ### Part (i): If \(^{{2n}}C_3 : ^nC_3 = 11 : 1\), find \(n\). 1. **Write the ratio using the combination formula**: \[ \frac{^{{2n}}C_3}{^nC_3} = \frac{\frac{(2n)!}{3!(2n-3)!}}{\frac{n!}{3!(n-3)!}} = \frac{(2n)!}{(2n-3)!} \cdot \frac{(n-3)!}{n!} \] 2. **Simplify the expression**: \[ = \frac{(2n)(2n-1)(2n-2)}{n(n-1)(n-2)} \] 3. **Set the ratio equal to 11**: \[ \frac{(2n)(2n-1)(2n-2)}{n(n-1)(n-2)} = 11 \] 4. **Cross-multiply**: \[ (2n)(2n-1)(2n-2) = 11n(n-1)(n-2) \] 5. **Expand both sides**: - Left side: \[ 2n(2n-1)(2n-2) = 2n(4n^2 - 6n + 2) = 8n^3 - 12n^2 + 4n \] - Right side: \[ 11n(n-1)(n-2) = 11(n^3 - 3n^2 + 2n) = 11n^3 - 33n^2 + 22n \] 6. **Set the equation**: \[ 8n^3 - 12n^2 + 4n = 11n^3 - 33n^2 + 22n \] 7. **Rearranging the equation**: \[ 0 = 3n^3 - 21n^2 + 18n \] 8. **Factor out common terms**: \[ 0 = 3n(n^2 - 7n + 6) \] 9. **Factoring the quadratic**: \[ n^2 - 7n + 6 = (n - 1)(n - 6) = 0 \] 10. **Find the values of \(n\)**: \[ n = 1 \quad \text{or} \quad n = 6 \] ### Part (ii): If \(^{{2n}}C_3 : ^nC_2 = 12 : 1\), find \(n\). 1. **Write the ratio using the combination formula**: \[ \frac{^{{2n}}C_3}{^nC_2} = \frac{\frac{(2n)!}{3!(2n-3)!}}{\frac{n!}{2!(n-2)!}} = \frac{(2n)!}{(2n-3)!} \cdot \frac{2!(n-2)!}{n!} \] 2. **Simplify the expression**: \[ = \frac{(2n)(2n-1)(2n-2)}{n(n-1)} \cdot 2 \] 3. **Set the ratio equal to 12**: \[ \frac{2(2n)(2n-1)(2n-2)}{n(n-1)} = 12 \] 4. **Cross-multiply**: \[ 2(2n)(2n-1)(2n-2) = 12n(n-1) \] 5. **Simplify**: \[ (2n)(2n-1)(2n-2) = 6n(n-1) \] 6. **Expand both sides**: - Left side: \[ 2n(4n^2 - 6n + 2) = 8n^3 - 12n^2 + 4n \] - Right side: \[ 6n^2 - 6n \] 7. **Set the equation**: \[ 8n^3 - 12n^2 + 4n = 6n^2 - 6n \] 8. **Rearranging the equation**: \[ 8n^3 - 18n^2 + 10n = 0 \] 9. **Factor out common terms**: \[ 2n(4n^2 - 9n + 5) = 0 \] 10. **Factoring the quadratic**: \[ 4n^2 - 9n + 5 = (4n - 5)(n - 1) = 0 \] 11. **Find the values of \(n\)**: \[ n = 0.25 \quad \text{or} \quad n = 1 \] ### Final Answers: - For part (i): \(n = 1\) or \(n = 6\) - For part (ii): \(n = 1\) or \(n = 0.25\)
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (i) Short Answer Type Questions|14 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (i) Long Answer Type Questions - I|8 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (e ) Short Answer Type Questions|8 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If .^(2n)C_(3):.^(n)C_(3)=12:1 , find n.

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

Determine n if ""^(2n)C_(3):""^(n)C_(3)=12:1 .

(i) If ""^(n)C_(8)= ""^(n)C_(2) , find ""^(n)C_(2) . (ii) If ""^(n)C_(10)= ""^(n)C_(12) , determine n and hence ""^(n)C_(5) . (iii) If ""^(n)C_(9)= ""^(n)C_(8) , find ""^(n)C_(17) .

If .^(2n)C_(4): .^(n)C_(3)=21:1 , then find the value of n.

If the ratio ^(2n)C_(3).^(n)C_(3) is equal to 11:1 find n