Home
Class 11
MATHS
If ""^(n-1)C(r ): ""^(n)C(r ): ""^(n+1)C...

If `""^(n-1)C_(r ): ""^(n)C_(r ): ""^(n+1)C_(r )=6:9:13`, find ` 'n' ` and ` 'r'`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where the ratios of combinations are given as \( \binom{n-1}{r} : \binom{n}{r} : \binom{n+1}{r} = 6 : 9 : 13 \), we will approach it step by step. ### Step 1: Set up the equations based on the ratios From the given ratios, we can express the first two ratios: \[ \frac{\binom{n-1}{r}}{\binom{n}{r}} = \frac{6}{9} \quad \text{and} \quad \frac{\binom{n}{r}}{\binom{n+1}{r}} = \frac{9}{13} \] ### Step 2: Simplify the first ratio Using the formula for combinations: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] we can write: \[ \frac{\binom{n-1}{r}}{\binom{n}{r}} = \frac{\frac{(n-1)!}{r!(n-1-r)!}}{\frac{n!}{r!(n-r)!}} = \frac{(n-1)! \cdot (n-r)!}{n! \cdot (n-1-r)!} \] This simplifies to: \[ \frac{(n-1)! \cdot (n-r)!}{n \cdot (n-1)! \cdot (n-1-r)!} = \frac{(n-r)}{n} \] Setting this equal to \( \frac{6}{9} \): \[ \frac{n-r}{n} = \frac{2}{3} \] ### Step 3: Cross-multiply and solve for \( n \) and \( r \) Cross-multiplying gives: \[ 3(n - r) = 2n \implies 3n - 3r = 2n \implies n = 3r \] (Equation 1) ### Step 4: Simplify the second ratio Now we simplify the second ratio: \[ \frac{\binom{n}{r}}{\binom{n+1}{r}} = \frac{\frac{n!}{r!(n-r)!}}{\frac{(n+1)!}{r!(n+1-r)!}} = \frac{n! \cdot (n+1-r)!}{(n+1)! \cdot (n-r)!} \] This simplifies to: \[ \frac{(n+1-r)}{(n+1)} \] Setting this equal to \( \frac{9}{13} \): \[ \frac{n+1-r}{n+1} = \frac{9}{13} \] ### Step 5: Cross-multiply and solve for \( n \) and \( r \) Cross-multiplying gives: \[ 13(n + 1 - r) = 9(n + 1) \implies 13n + 13 - 13r = 9n + 9 \] Rearranging gives: \[ 4n - 13r = -4 \] (Equation 2) ### Step 6: Solve the system of equations Now we have two equations: 1. \( n = 3r \) 2. \( 4n - 13r = -4 \) Substituting \( n = 3r \) into Equation 2: \[ 4(3r) - 13r = -4 \implies 12r - 13r = -4 \implies -r = -4 \implies r = 4 \] ### Step 7: Find \( n \) Now substituting \( r = 4 \) back into Equation 1: \[ n = 3 \cdot 4 = 12 \] ### Final Answer Thus, the values of \( n \) and \( r \) are: \[ n = 12, \quad r = 4 \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (i) Short Answer Type Questions|14 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (i) Long Answer Type Questions - I|8 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (e ) Short Answer Type Questions|8 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If .^(n+1)C_(r+1): .^(n)C_(r)=11:6 and .^(n)C_(r): .^(n-1)C_(r-1)=6:3 , find n and r.

" If "^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3," then "nr=

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

If .^(n-1)C_r:^nC_r:^(n+1)C_r=6:9:13 find n and r.

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

nC_(r):^(n)C_(r+1)=1:2 and ^(n)C_(r+1):^(n)C_(r+2)=2:3, findn and r