Home
Class 11
MATHS
The correct match of the following is : ...

The correct match of the following is :
`{:(,"Column I",,"Column II"),((i),|__ul(0),(a),(|__ul(n))/(|__ul(n-r))),((ii),|__ul(n),(b),1),((iii),""^(n)C_(r ),(c ),1xx2xx3xx....xxn),((iv),""^(n)P_(r ),(d),(|__ul(n))/(|__ul(r )|__ul(n-r))):}`

A

(i)-(b), (ii)-(c ), (iii)-(d), (iv)-(a)

B

(i)-(d), (ii)-(a), (iii)-(c ), (iv)-(b)

C

(i)-(c ), (ii)-(b), (iii)-(a), (iv)-(d)

D

(i)-(a), (ii)-(d),(iii)-(c ),(iv)-(b)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of matching the items in Column I with those in Column II, we will analyze each item in Column I and find its corresponding expression in Column II. ### Step-by-step Solution: 1. **Identify the first item in Column I:** - The first item is \(0!\) (zero factorial). - By definition, \(0! = 1\). 2. **Match \(0!\) with Column II:** - In Column II, we see that the value \(1\) corresponds to option (b). - Therefore, we can match \(0!\) with (b). 3. **Identify the second item in Column I:** - The second item is \(n!\) (n factorial). - By definition, \(n! = n \times (n-1) \times (n-2) \times \ldots \times 3 \times 2 \times 1\). - This can also be expressed as \(1 \times 2 \times 3 \times \ldots \times n\). 4. **Match \(n!\) with Column II:** - In Column II, this expression corresponds to option (c). - Therefore, we can match \(n!\) with (c). 5. **Identify the third item in Column I:** - The third item is \(\binom{n}{r}\) (n choose r or combinations). - The formula for combinations is given by \(\binom{n}{r} = \frac{n!}{r!(n-r)!}\). 6. **Match \(\binom{n}{r}\) with Column II:** - In Column II, this expression corresponds to option (d). - Therefore, we can match \(\binom{n}{r}\) with (d). 7. **Identify the fourth item in Column I:** - The fourth item is \(P(n, r)\) (permutations). - The formula for permutations is given by \(P(n, r) = \frac{n!}{(n-r)!}\). 8. **Match \(P(n, r)\) with Column II:** - In Column II, this expression corresponds to option (a). - Therefore, we can match \(P(n, r)\) with (a). ### Final Matches: - \(0! \rightarrow (b)\) - \(n! \rightarrow (c)\) - \(\binom{n}{r} \rightarrow (d)\) - \(P(n, r) \rightarrow (a)\) ### Summary of Matches: 1. \(0! \rightarrow (b)\) 2. \(n! \rightarrow (c)\) 3. \(\binom{n}{r} \rightarrow (d)\) 4. \(P(n, r) \rightarrow (a)\)
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (B) FILL IN THE BLANKS|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (C ) TRUE/FALSE QUESTIONS|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (k) Long Answer Type Questions - I|3 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

The correct match of the following is : {:(,"Column - I",,"Column - II"),((i),""^(n)C_(r ),(a),n!),((ii),""^(n)C_(0),(b),1),((iii),""^(n)P_(r ),(c ),r!.""^(n)C_(r )),((iv),""^(n)P_(n),(d),""^(n)C_(n-r)):}

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

Determine the ox.no. of underlined atom in each of the following: (a) Kul(Cr)O_(3)Cl , (b) K_(2)ul(Fe)O_(4) , (c ) Ba(H_(2)ul(P)O_(2))_(2) (d) Rb_(4)Na[Hul(V)_(10)O_(28)] (e ) Ba_(2)ul(Xe)O_(6) (f) Na_(2)ul(S)_(2) (g) K_(2)ul(Mn)O_(4) (h) K_(2)ul(Cr)_(2)O_(7) (i) ul(Mn)O_(4)^(-) (j) ul(S)O_(4)^(2-) (k) ul(P)O_(4)^(3-) (I) ul(C )O_(3)^(2-) (m) ul(Cu)(NH_(3))_(4)^(2+) (n) ul(Ni)(CO)_(4) (o) ul(C )s_(2) (p) (NH_(4))_(6)ul(Mo)_(7)O_(24) (q) [ul(Co)F_(4)]^(-) (r) ul(Os)O_(4) (s) Na_(4)ul(Xe)O_(6) (t) Kul(Cr)O_(3)Cl (u) ul(F)_(2)H_(2)

Prove that: (i) ""^(n)P_(n)=""^(n)P_(n-1) " (ii) "^(n)P_(r)=n* ""^(n-1)P_(r-1) " (iii) "^(n-1)P_(r)+r* ""^(n-1)P_(r-1)=""^(n)P_(r)

Calculate the oxidation number of underlined elements in following compounds: (i) Ca ul(O)_(2) (ii) H_(2) ul(S)_(2)O_(7) (iii) K_(2) ul(Mn)O_(4) (iv) K ul(I)_(3)

MODERN PUBLICATION-PERMUTATIONS AND COMBINATIONS -OBJECTIVE TYPE QUESTIONS (A) MULTIPLE CHOICE QUESTIONS
  1. In an examination there are three multiple choice questions and each q...

    Text Solution

    |

  2. If 1/(9!)+1/(10!)=x/(11!) then x=

    Text Solution

    |

  3. L.C.M. of 3!, 4! And 5! Is :

    Text Solution

    |

  4. 7!-5! is equal to :

    Text Solution

    |

  5. The value of f(4) - f(3) is

    Text Solution

    |

  6. If 1/(8!)+1/(9!)=x/(10 !),find x

    Text Solution

    |

  7. The correct match of the following is : {:(,"Column - I",,"Column ...

    Text Solution

    |

  8. The correct match of the following is : {:(,"Column I",,"Column II...

    Text Solution

    |

  9. (7!) / (5!) is :

    Text Solution

    |

  10. The value of |ul(4)-|ul(3) is :

    Text Solution

    |

  11. If ""^(n)C(12)=""^(n)C(8), then n is equal to

    Text Solution

    |

  12. The number of all numbers having 5 digits, with distinct digits, is :

    Text Solution

    |

  13. The number of words that can be formed by using all the letters of the...

    Text Solution

    |

  14. Given five line segments of length 2, 3, 4, 5, 6 units. Then the numb...

    Text Solution

    |

  15. How many numbers greater than 10 lacs be formed from 2,3,0,3,4,2,3? 42...

    Text Solution

    |

  16. The remainder obtained when 1!+2!+3!+……+11! is divided by 12 is :

    Text Solution

    |

  17. The value of ""^(2)P(1)+""^(3)P(1)+……+ ""^(n)P(1) is equal to :

    Text Solution

    |

  18. How many four digit numbers abcd exist such that a is odd, b is divisi...

    Text Solution

    |

  19. Out of 7 consonants and 4 vowels. how many words of 3 consonant and 2 ...

    Text Solution

    |

  20. The remaninder obtained when 1!+2!+3!+……..+11! is divided by 12 is :

    Text Solution

    |