Home
Class 11
MATHS
""^(25)C(22)- ""^(24)C(21)= …………...

`""^(25)C_(22)- ""^(24)C_(21)=` …………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \binom{25}{22} - \binom{24}{21} \), we will use the formula for combinations, which is given by: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] ### Step-by-Step Solution: 1. **Calculate \( \binom{25}{22} \)**: \[ \binom{25}{22} = \frac{25!}{22!(25-22)!} = \frac{25!}{22! \cdot 3!} \] Here, \( 25 - 22 = 3 \). 2. **Simplify \( \binom{25}{22} \)**: \[ \binom{25}{22} = \frac{25 \times 24 \times 23 \times 22!}{22! \cdot 3!} \] The \( 22! \) in the numerator and denominator cancels out: \[ = \frac{25 \times 24 \times 23}{3!} \] Since \( 3! = 6 \): \[ = \frac{25 \times 24 \times 23}{6} \] 3. **Calculate \( \binom{24}{21} \)**: \[ \binom{24}{21} = \frac{24!}{21!(24-21)!} = \frac{24!}{21! \cdot 3!} \] Here, \( 24 - 21 = 3 \). 4. **Simplify \( \binom{24}{21} \)**: \[ \binom{24}{21} = \frac{24 \times 23 \times 22 \times 21!}{21! \cdot 3!} \] The \( 21! \) in the numerator and denominator cancels out: \[ = \frac{24 \times 23 \times 22}{3!} \] Since \( 3! = 6 \): \[ = \frac{24 \times 23 \times 22}{6} \] 5. **Now, substitute back into the original expression**: \[ \binom{25}{22} - \binom{24}{21} = \frac{25 \times 24 \times 23}{6} - \frac{24 \times 23 \times 22}{6} \] 6. **Factor out the common terms**: \[ = \frac{1}{6} \left( 25 \times 24 \times 23 - 24 \times 23 \times 22 \right) \] \[ = \frac{1}{6} \times 24 \times 23 \times (25 - 22) \] \[ = \frac{1}{6} \times 24 \times 23 \times 3 \] 7. **Calculate the final result**: \[ = \frac{1}{6} \times 72 \times 23 \] \[ = 12 \times 23 = 276 \] ### Final Answer: \[ \binom{25}{22} - \binom{24}{21} = 276 \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (C ) TRUE/FALSE QUESTIONS|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (A) MULTIPLE CHOICE QUESTIONS|25 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Prove that : ""^(25)C_(10)+""^(24)C_(10)+……..+""^(10)C_(10)=""^(26)C_(11)

If ^(24)C_(x)=^(24)C_(2x+3) find x

Evaluate : ^25C_22-^24C_21

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is (A) 2^(21) - 2^(11) (B) 2^(21) - 2^(10) (C) 2^(20) - 2^(9) (D) 2^(20) - 2^(10)

let 2..^(20)C_(0)+5.^(20)C_(1)+8.^(20)C_(2)+?.+62.^(20)C_(20) . Then sum of this series is (A) 16.2^(22) (B) 8.2^(21) (C) 8.2^(21) (D) 16.2^(21)

if sum_(r=0)^(25).^(50)C_(r)(.^(50-r)C_(25-r))=k(.^(50)C_25), then k equals: (a) 2^(25) (b) 2^(25)-1 (c) 2^(24) (d) 25^(2)

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The coefficient of x^(24) in ((25C_(1))/(25C_(0))-x)(x-2^(2)(25C_(2))/(25C_(1))(x-3^(2)(25C_(3))/(25C_(2)))(x-4^(2)(25C_(4))/(25C_(3)))......,(x-25^(2)(25C_(25))/(25C_(24))) is equal to 2925

The coefficient x^(5) in the expansion of (1+x)^(21)+(1+x)^(22)++(1+x)^(30) is a.51C_(5) b.^(9)C_(5) c.^(31)C_(6)-^(21)C_(6) d.^(30)C_(5)+^(20)C_(5)