Home
Class 11
MATHS
If ""^(n)C(2)= ""^(n)C(3), then n = ………...

If `""^(n)C_(2)= ""^(n)C_(3)`, then n = ……….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \binom{n}{2} = \binom{n}{3} \), we can follow these steps: ### Step 1: Write the combinations in terms of factorials The formula for combinations is given by: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Using this, we can express \( \binom{n}{2} \) and \( \binom{n}{3} \): \[ \binom{n}{2} = \frac{n!}{2!(n-2)!} \] \[ \binom{n}{3} = \frac{n!}{3!(n-3)!} \] ### Step 2: Set the two combinations equal to each other Now, we set the two expressions equal: \[ \frac{n!}{2!(n-2)!} = \frac{n!}{3!(n-3)!} \] ### Step 3: Cancel \( n! \) from both sides Since \( n! \) is common in both expressions, we can cancel it (assuming \( n \geq 3 \)): \[ \frac{1}{2!(n-2)!} = \frac{1}{3!(n-3)!} \] ### Step 4: Cross-multiply Cross-multiplying gives us: \[ 3!(n-3)! = 2!(n-2)! \] ### Step 5: Substitute the factorial values We know that \( 3! = 6 \) and \( 2! = 2 \), so we substitute these values: \[ 6(n-3)! = 2(n-2)! \] ### Step 6: Express \( (n-2)! \) in terms of \( (n-3)! \) We can express \( (n-2)! \) as: \[ (n-2)! = (n-2)(n-3)! \] Substituting this into our equation gives: \[ 6(n-3)! = 2(n-2)(n-3)! \] ### Step 7: Cancel \( (n-3)! \) from both sides Assuming \( n \geq 3 \), we can cancel \( (n-3)! \): \[ 6 = 2(n-2) \] ### Step 8: Solve for \( n \) Now, divide both sides by 2: \[ 3 = n - 2 \] Adding 2 to both sides gives: \[ n = 5 \] Thus, the value of \( n \) is \( 5 \). ### Final Answer: n = 5
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (C ) TRUE/FALSE QUESTIONS|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (A) MULTIPLE CHOICE QUESTIONS|25 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

10^(n)c_(2)=3^(n+1)c_(3), find n

If ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P., find n.

Find 'n', if ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P.

(i) If ""^(2n)C_(3) : ""^(n)C_(3)= 11 : 1 , find n. (ii) If ""^(2n)C_(3) : ""^(n)C_(2) = 12 : 1 , find n.

3""^(n)C_(0)+10""^(n)C_(1)+28""^(n)C_(2)+82""^(n)C_(3)+…(n+1) terms =

If ([""^(n)C_(r) + 4*""^(n)C_(r+1) + 6*""^(n)C_(r+2)+ 4*""^(n)C_(r+3) + ""^(n)C_(r+4)])/([""^(n)C_(r) + 3. ""^(n)C_(r+1)+ 3*""^(n)C_(r+2) + ""^(n)C_(r +3)])=(n + lambda)/(r+lambda) the value of lambda is