Home
Class 11
MATHS
If ""^(n)C(7)= ""^(n)C(5), then ""C(4)=...

If `""^(n)C_(7)= ""^(n)C_(5)`, then `""C_(4)=` ………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \binom{n}{7} = \binom{n}{5} \), we can use the property of combinations that states: \[ \binom{n}{r} = \binom{n}{n-r} \] ### Step 1: Apply the property of combinations Given that \( \binom{n}{7} = \binom{n}{5} \), we can set \( r = 7 \) and \( n - r = 5 \). This implies: \[ n - 7 = 5 \] ### Step 2: Solve for \( n \) Now, we can solve for \( n \): \[ n = 5 + 7 = 12 \] ### Step 3: Find \( \binom{n}{4} \) Now that we have \( n = 12 \), we need to find \( \binom{12}{4} \): \[ \binom{12}{4} = \frac{12!}{4!(12-4)!} = \frac{12!}{4! \cdot 8!} \] ### Step 4: Simplify \( \binom{12}{4} \) Calculating \( \binom{12}{4} \): \[ \binom{12}{4} = \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} \] Calculating the numerator: \[ 12 \times 11 = 132 \] \[ 132 \times 10 = 1320 \] \[ 1320 \times 9 = 11880 \] Calculating the denominator: \[ 4 \times 3 = 12 \] \[ 12 \times 2 = 24 \] \[ 24 \times 1 = 24 \] Now, divide the numerator by the denominator: \[ \binom{12}{4} = \frac{11880}{24} = 495 \] ### Final Answer Thus, \( \binom{12}{4} = 495 \). ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (C ) TRUE/FALSE QUESTIONS|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (A) MULTIPLE CHOICE QUESTIONS|25 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If ""^(n)C_(7)=""^(n)C_(5) , find ""^(n)C_(4) .

Find n if ""^(n)C_(4)=""^(n)C_(6)

(i) If ""^(n)C_(8)= ""^(n)C_(2) , find ""^(n)C_(2) . (ii) If ""^(n)C_(10)= ""^(n)C_(12) , determine n and hence ""^(n)C_(5) . (iii) If ""^(n)C_(9)= ""^(n)C_(8) , find ""^(n)C_(17) .

If .^(n)C_(9)=.^(n)C_(7) , find n.