Home
Class 11
MATHS
Is it Ture or False 1+""^(3)C(1)+""^(...

Is it `Ture` or `False`
`1+""^(3)C_(1)+""^(4)C_(2)=""^(5)C_(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \( 1 + \binom{3}{1} + \binom{4}{2} = \binom{5}{3} \) is true or false, we will evaluate both sides of the equation step by step. ### Step 1: Calculate \( \binom{3}{1} \) The binomial coefficient \( \binom{n}{r} \) is calculated using the formula: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] For \( \binom{3}{1} \): \[ \binom{3}{1} = \frac{3!}{1!(3-1)!} = \frac{3!}{1! \cdot 2!} = \frac{3 \times 2 \times 1}{1 \times (2 \times 1)} = \frac{6}{2} = 3 \] ### Step 2: Calculate \( \binom{4}{2} \) Now, we calculate \( \binom{4}{2} \): \[ \binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4!}{2! \cdot 2!} = \frac{4 \times 3 \times 2 \times 1}{(2 \times 1) \cdot (2 \times 1)} = \frac{24}{4} = 6 \] ### Step 3: Calculate the left-hand side (LHS) Now we can compute the left-hand side of the equation: \[ 1 + \binom{3}{1} + \binom{4}{2} = 1 + 3 + 6 = 10 \] ### Step 4: Calculate \( \binom{5}{3} \) Next, we calculate \( \binom{5}{3} \): \[ \binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3! \cdot 2!} = \frac{5 \times 4 \times 3!}{3! \cdot (2 \times 1)} = \frac{20}{2} = 10 \] ### Step 5: Compare LHS and RHS Now we compare both sides: \[ LHS = 10 \quad \text{and} \quad RHS = 10 \] Since both sides are equal, we conclude that: \[ 1 + \binom{3}{1} + \binom{4}{2} = \binom{5}{3} \] Thus, the statement is **True**.
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise NCERT FILE EXERCISE 7.1|6 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (B) FILL IN THE BLANKS|10 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Prove that 1+""^(3)C_(1)+ ""^(4)C_(2)= ""^(5)C_(3) .

The sum of the series ""^(3)C_(0)- ""^(4)C_(1) . (1)/(2) + ""^(5)C_(2)((1)/(2))^(2) - ""^(6)C_(3)((1)/(2))^(3) + ... to infty , is

Prove that : ""^(2)C_(1)+ ""^(3)C_(1)+""^(4)C_(1)=""^(3)C_(2)+""^(4)C_(2) .

The value of 1^(2).C_(1)+3^(2).C_(3)+5^(2).C_(5)+... is

C_(1)+2.5C_(2)+3.5^(2)C_(3)+----1=

The sum of the series ""^(4)C_(0) + ""^(5)C_(1) x + ""^(6)C_(2) x^(2)+""^(7)C_(3)x^(3) +... to infty , is

The value of 4{C_(1)+4.C_(2)+4^(2)C_(3)+...+4^(n-1)} is

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

""^(15)C_(0)*""^(5)C_(5)+""^(15)C_(1)*""^(5)C_(4)+""^(15)C_(2)*""^(5)C_(3)+""^(15)C_(3)*""^(5)C_(2)+""^(15)C_(4)*""^(5)C_(1) is equal to :

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=