Home
Class 11
MATHS
What are ""^(n)C(0) and ""^(n)C(n) ?...

What are `""^(n)C_(0)` and `""^(n)C_(n)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question "What are \( \binom{n}{0} \) and \( \binom{n}{n} \)?", we can break it down into two parts. ### Step 1: Calculate \( \binom{n}{0} \) The notation \( \binom{n}{r} \) represents the number of ways to choose \( r \) objects from \( n \) objects. The formula for combinations is given by: \[ \binom{n}{r} = \frac{n!}{(n-r)! \cdot r!} \] For \( r = 0 \): \[ \binom{n}{0} = \frac{n!}{(n-0)! \cdot 0!} = \frac{n!}{n! \cdot 0!} \] Since \( 0! = 1 \): \[ \binom{n}{0} = \frac{n!}{n! \cdot 1} = \frac{n!}{n!} = 1 \] ### Step 2: Calculate \( \binom{n}{n} \) Now, we calculate \( \binom{n}{n} \): Using the same formula for combinations: \[ \binom{n}{n} = \frac{n!}{(n-n)! \cdot n!} = \frac{n!}{0! \cdot n!} \] Again, since \( 0! = 1 \): \[ \binom{n}{n} = \frac{n!}{1 \cdot n!} = \frac{n!}{n!} = 1 \] ### Final Answer Thus, both \( \binom{n}{0} \) and \( \binom{n}{n} \) are equal to 1: \[ \binom{n}{0} = 1 \quad \text{and} \quad \binom{n}{n} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Revision Exercise|22 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

What is ""^(n)C_(1)+ ""^(n)C_(2)+……… + ""^(n)C_(n) ?

If n is an odd natural number and ""^(n)C_(0)lt ""^(n)C_(1)lt ""^(n)C_(2)lt ...lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt ""^(n)C_(r+2) gt ...gt""^(n)C_(n) , then r=

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

Prove that : ""^(n)C_(0).""^(2n)C_(n)-""^(n)C_(1).""^(2n-2)Cn_(n)+""^(n)C_(2).""^(2n-4)Cn_(n)+......=2^n