Home
Class 11
MATHS
What is ""^(n)C(1)+ ""^(n)C(2)+……… + ""^...

What is `""^(n)C_(1)+ ""^(n)C_(2)+……… + ""^(n)C_(n)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the binomial coefficients from \( nC_1 \) to \( nC_n \). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficient Identity**: We start with the well-known identity for binomial coefficients: \[ \sum_{k=0}^{n} {n \choose k} = 2^n \] This identity states that the sum of all binomial coefficients for a given \( n \) is equal to \( 2^n \). 2. **Breaking Down the Sum**: We can express the sum of the binomial coefficients from \( nC_1 \) to \( nC_n \) as: \[ {n \choose 1} + {n \choose 2} + \ldots + {n \choose n} = \sum_{k=1}^{n} {n \choose k} \] We notice that this sum excludes the term \( {n \choose 0} \). 3. **Using the Identity**: From the identity we stated earlier, we can rewrite the sum as: \[ \sum_{k=1}^{n} {n \choose k} = \sum_{k=0}^{n} {n \choose k} - {n \choose 0} \] Here, \( {n \choose 0} = 1 \). 4. **Substituting the Values**: Now, substituting the known values into the equation: \[ \sum_{k=1}^{n} {n \choose k} = 2^n - 1 \] 5. **Final Result**: Therefore, the sum \( {n \choose 1} + {n \choose 2} + \ldots + {n \choose n} \) simplifies to: \[ 2^n - 1 \] ### Conclusion: The final answer is: \[ {n \choose 1} + {n \choose 2} + \ldots + {n \choose n} = 2^n - 1 \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Revision Exercise|22 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

What are ""^(n)C_(0) and ""^(n)C_(n) ?

Find 'n', if ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P.

If ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P., find n.

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

The coefficient of x^(n) in the polynomial (x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n)) is

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .